Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
Tham khảo ạ:
y3=x3+8x2−6x+8y3=x3+8x2−6x+8
⟹y3−x3=8x2−6x+8⟹y3−x3=8x2−6x+8
⟹(y−x)(y2+x2+xy)=8x2−6x+8⟹(y−x)(y2+x2+xy)=8x2−6x+8
Bây giờ nếu chúng ta có thể xác định 8x2−6x+8 thì chúng ta có thể so sánh LHS với RHS.Am I có đi đúng hướng không?
HT
TL:
Anh vào nick của em thống kê hỏi đáp vì nó không hiện lên ạ
@@@@@@@@@@@@@@@@@@@@@@
Nếu đúng thì anh k nhé
HT
đề bài : ĐK x khác 1
\(=>x^2\left(x-1\right)+x^2=8\left(x-1\right)^2\)
=>\(x^2\left(x^2-2x+1\right)+x^2-8\left(x^2-2x+1\right)=0\)
=>\(x^4-2x^3+x^2+x^2-8x^2+16x-8\)
\(=>x^4-2x^3-6x^2+16-8=0\)
\(=>x^3\left(x-2\right)-6x\left(x-2\right)+4\left(x-2\right)=0\)
\(=>\left(x-2\right)\left(x^3-6x+4\right)=0\)
=>\(\left(x-2\right)\left(x^3-4x-2x+4\right)=0\)
\(=>\left(x-2\right)\left(x-2\right)\left(x^2+2x-2\right)\)=0 ( phân tích bình thường là ra như này )
\(=>\orbr{\begin{cases}x=2\\x^2+2x-2=0.\Delta'=1+2=3=>x=-1\pm\sqrt{3}\end{cases}}\)( ko biết học ô học cái này chưa nx ??)
zậy
1. Tìm x thỏa mản phương trình x nguyên
\(\left|x+1\right|\left(x^2-5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left|x+1\right|=0\Rightarrow x=-1\) ( nhận )
Hoặc
\(x^2-5=0\Rightarrow x^2=5\) ( loại )
Hoặc
\(x^2-4=0\Rightarrow x^2=2^2\Rightarrow x=\pm2\)
Vậy: \(x=\left(-2;-1;2\right)\)
Bài 1:
\(\left|x+1\right|\left(x^2-5\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left|x+1\right|=0\\x^2-5=0\\x^2-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\sqrt{5}\\x=\pm2\end{matrix}\right.\)
Do \(x\in Z\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Vậy...
Bài 3:
\(x^2-2xy+2y^2=0\)
\(\Rightarrow x^2-2xy+y^2+y^2=0\)
\(\Rightarrow\left(x-y\right)^2+y^2=0\)
Mà \(\left(x-y\right)^2+y^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\y^2=0\end{matrix}\right.\Rightarrow x=y=0\)
Vậy...
Bài 5,6 áp dụng t/c dãy tỉ số bằng nhau là ra
\(3x^2-2x-8=0\\ \Leftrightarrow3x^2-2x=8\\ E=6x^2-4x+9\\ =3x^2+3x^2-2x-2x-8+17\\ =\left(3x^2-2x-8\right)+\left(3x^2-2x+17\right)\\ =3x^2-2x+17\\ =\left(3x^2-2x\right)+17=8+17=25\)
\(x+y=0\\ \Leftrightarrow y=-x\\ D=x^4-y^4+x^3y-xy^3\\ =\left(x^2+y^2\right)\left(x^2-y^2\right)+xy\left(x^2-y^2\right)\\ =\left(x^2+y^2+xy\right)\left(x^2-y^2\right)\\ =\left(x^2+\left(-x\right)^2+x.\left(-x\right)\right)\left(x^2-\left(-x\right)^2\right)\\ =\left(x^2+x^2-x^2\right)\left(x^2-x^2\right)\\ =x^2.0=0\)
Ta có : x2 + 2x - 3 = 0
<=> x2 - x + 3x - 3 = 0
<=> x(x - 1) + 3(x - 1) = 0
<=> (x + 3)(x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)
\(x^2+2x-3=0\)
\(x^2-x+3x-3=0\)
\(x\left(x-1\right)+3\left(x-1\right)=0\)
\(\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)
\(\left(x-1\right)\left(x+5\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+5>0\Rightarrow x>-5\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+5< 0\Rightarrow x< -5\end{matrix}\right.\end{matrix}\right.\)
\(\left(x-1\right)\left(x+5\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+5< 0\Rightarrow x< -5\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+5>0\Rightarrow x>-5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-5< x< 1\)
câu dễ tự làm
\(\Rightarrow x>-5;x< -5\)
1, \(x^2-4x-4x+16=0\)
\(\Leftrightarrow x^2-8x+16=0\)
\(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy.............
2, \(x^2+3x-5x-15=0\)
\(\Leftrightarrow x^2-2x+1-16=0\)
\(\Leftrightarrow\left(x-1\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy...............
3, \(x^2-6x+8=0\)
\(\Leftrightarrow x^2-6x+9-1=0\)
\(\Leftrightarrow\left(x-3\right)^2-1=0\)
\(\Leftrightarrow\left(x-3\right)^3=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy......................
4, \(x^2+8x+12=0\)
\(\Leftrightarrow x^2+8x+16-4=0\)
\(\Leftrightarrow\left(x+4\right)^2-4=0\)
\(\Leftrightarrow\left(x+4\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=2\\x+4=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)
Vậy............
ta có: \(\frac{3}{4}x-\frac{5}{6}=\frac{7}{8}\)<=> \(\frac{3}{4}x=\frac{41}{24}\)
=> \(x=\frac{41}{18}\)
Vậy x= \(\frac{41}{18}\)
Ta có: \(\frac{3}{4}x-\frac{5}{6}=\frac{7}{8}\)
\(\Rightarrow\frac{3}{4}x=\frac{7}{8}+\frac{5}{6}\)
\(\Rightarrow\frac{3}{4}x=\frac{21}{24}+\frac{20}{24}\)
\(\Rightarrow\frac{3}{4}x=\frac{41}{24}\)
\(\Rightarrow x=\frac{41}{24}:\frac{3}{4}\)
\(\Rightarrow x=\frac{41}{24}.\frac{4}{3}\)
\(\Rightarrow x=\frac{41}{18}\)
Vậy \(x=\frac{41}{18}\)
Chuk pạn hok tốt!
@dcv_new: thử tách theo cách x^4+x^2+6x-6-2 thử đi:)) chắc cũng ra á:)
\(x^4+x^2+6x-8=0\)
\(\Leftrightarrow\left(x^3+x^2+2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-x+4\right)\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-x+4\ne0\right)\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)( chắc dân chuyên như cậu hiểu chỗ này á )