Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nghĩ đc bài nào làm bài đấy ^^
\(\text{1)}\sqrt{x^2+x-3}=x+m\)\(\text{(ĐKXĐ: }x^2+x-3\ge0\)\(\text{)}\)
\(\Leftrightarrow x^2+x-3=x^2+2mx+m^2\)
\(\Leftrightarrow x-2mx=m^2+3\)
\(\Leftrightarrow x\left(1-2m\right)=m^2+3\)(1)
*Nếu 1 - 2m = 0 thì \(m=\frac{1}{2}\)
Khi đó pt (1) \(\Leftrightarrow0x=\frac{1}{4}+3\)
Pt vô nghiệm
*Nếu 1 - 2m \(\ne\)0 thì \(m\ne\frac{1}{2}\)
Khi đó pt (1) có nghiệm duy nhất \(x=\frac{m^2+3}{1-2m}\)
Kết hợp ĐKXĐ \(x^2+x-3\ge0\)
\(\Leftrightarrow\frac{\left(m^2+3\right)^2}{\left(1-2m\right)^2}+\frac{m^2+3}{1-2m}-3\ge0\)
Đến đây quy đồng lên được điều kiện của m và kết hợp m khác 1/2
=> KL
2) ĐKXĐ : -1 < x < 8
Đặt \(\sqrt{1+x}+\sqrt{8-x}=a\ge0\)
\(\Rightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{a^2-9}{2}\)
Khi đó \(a+\frac{a^2-9}{2}=m\)
\(\Leftrightarrow2a+a^2-9=2m\)
\(\Leftrightarrow a^2+2a-9-2m=0\)(1)
Xét \(\Delta'=1-\left(-9-2m\right)=10+2m\)
Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow m\ge-5\)
Từ (1) \(\Rightarrow a^2+2a-9=2m\ge2\left(-5\right)=-10\)
\(\Leftrightarrow a^2+2a-9\ge-10\)
\(\Leftrightarrow a^2+2a+1\ge0\)
\(\Leftrightarrow\left(a+1\right)^2\ge0\)(Luôn đúng)
Vậy *với m> -5 thì pt có vô số nghiệm nằm trong khoảng -1 < x < 8
* với m < -5 thì pt vô nghiệm
P/S: chả bt cách này đúng ko nx =.='
b) \(\sqrt{x^2+x+1}+\sqrt{x^2-x-1}=2\left|x\right|\)
bien doi ve trai ta co:
\(=\sqrt{x^2+2.\frac{1}{2}x+\frac{1}{2}-\frac{1}{2}+1}+\sqrt{x^2-2.\frac{1}{2}x-\frac{1}{2}+\frac{1}{2}-1}\)
\(=\sqrt{\left(x+\sqrt{\frac{1}{2}}\right)^2-\left(\frac{1}{2}-1\right)}+\sqrt{\left(x-\sqrt{\frac{1}{2}}\right)^2-\left(\frac{1}{2}+1\right)}\)
\(=\sqrt{\left(x+\sqrt{\frac{1}{2}}\right)^2+\frac{1}{2}}+\sqrt{\left(x-\sqrt{\frac{1}{2}}\right)^2-\frac{3}{2}}\)
den day thi mk chiu
a)Đặt \(x+\frac{4017}{2}=t\) thì pt <=> \(\left(t-\frac{1}{2}\right)^4+\left(t+\frac{1}{2}\right)^4=\frac{1}{8}\)
<=>\(\left[\left(t+\frac{1}{2}\right)^2-\left(t-\frac{1}{2}\right)^2\right]^2+2\left(t-\frac{1}{2}\right)^2\left(1+\frac{1}{2}\right)^2-\frac{1}{8}=0\)
<=>\(\left[\left(t+\frac{1}{2}-t+\frac{1}{2}\right)\left(t+\frac{1}{2}+t-\frac{1}{2}\right)\right]^2+2\left(t^2-\frac{1}{4}\right)^2-\frac{1}{8}=0\)
<=>\(\left(2t\right)^2+2\left(t^4-\frac{1}{2}t^2+\frac{1}{16}\right)-\frac{1}{8}=0\Leftrightarrow4t^2+2t^4-t^2+\frac{1}{8}-\frac{1}{8}=0\)
<=>\(2t^4+3t^2=0\Leftrightarrow t^2\left(2t^2+3\right)=0\Leftrightarrow t^2=0\)(do \(2t^2+3\ge3>0\))<=>t=0
<=>\(x+\frac{4017}{2}=0\Leftrightarrow x=-\frac{4017}{2}\)
\(\left(x-1\right)\left(\sqrt{3x+4}-1\right)=3\left(x+1\right)\)
\(\Leftrightarrow x=7\)
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
ĐKXĐ: bạn tự đặt nhé
đặt \(\sqrt{x^2-8}=a\) và \(\sqrt{x-2}=b\)==> \(a^2+b^2=x^2+x-10\)<=> \(x^2+x-9=a^2+b^2+1\)
khi đó pt đầu trở thành
\(a^2+b^2+1=a+b+ab\)
<=> \(2a^2+2b^2+2-2a-2b-2ab=0\)
<=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)
<=>\(\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)
<=> \(a=b=1\)
==> \(\sqrt{x-2}=1\)<=>x=3
vậy x=3