\(x^2+\dfrac{25x^2}{\left(x+5\right)^2}=11\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2021

ĐK: \(x\ne-5\)

\(x^2+\dfrac{25x^2}{\left(x+5\right)^2}=11\)

\(\Leftrightarrow x^2+\dfrac{25x^2}{\left(x+5\right)^2}-\dfrac{10x^2}{x+5}+\dfrac{10x^2}{x+5}=11\)

\(\Leftrightarrow\left(x-\dfrac{5x}{x+5}\right)^2+\dfrac{10x^2}{x+5}=11\)

\(\Leftrightarrow\dfrac{x^4}{\left(x+5\right)^2}+\dfrac{10x^2}{x+5}=11\)

\(\Leftrightarrow y^2+10y-11=0\left(y=\dfrac{x^2}{x+5}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-11\end{matrix}\right.\)

TH1: \(y=1\)

\(\Leftrightarrow\dfrac{x^2}{x+5}=1\)

\(\Leftrightarrow x^2=x+5\)

\(\Leftrightarrow x=\dfrac{1\pm\sqrt{21}}{2}\left(tm\right)\)

TH2: \(y=-11\)

\(\Leftrightarrow\dfrac{x^2}{x+5}=-11\)

\(\Leftrightarrow x^2=-11x-55\)

\(\Rightarrow\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{1\pm\sqrt{21}}{2}\)

7 tháng 4 2017

a) <=>

<=>

<=> 6(3x + 1) - 4(x - 2) - 3(1 - 2x) < 0

<=> 20x + 11 < 0

<=> 20x < - 11

<=> x <

b) <=> 2x2 + 5x – 3 – 3x + 1 ≤ x2 + 2x – 3 + x2 - 5

<=> 0x ≤ -6.

Vô nghiệm.

10 tháng 9 2019

\(\left(x^2+25+150\right)\left(x^2+30x+216\right)=2x^2\)

\(\Rightarrow\left[\left(x+12,5\right)^2-6,25\right]\left[\left(x+15\right)^2-9\right]=2x^2\)

\(\Rightarrow\left(x+15\right)\left(x+10\right)\left(x+18\right)\left(x+12\right)=2x^2\)

Đến đây tách như lớp 8 ,dài quá nên mk lười :) bạn tự giải nha

thanks làm tiếp để thế hệ sau tham khảo :

\(\Rightarrow\left(x+15\right)\left(x+12\right)\left(x+10\right)\left(x+18\right)=2x^2\)

\(\Rightarrow\left(x^2+27x+180\right)\left(x^2+28x+180\right)=2x^2\)

Chia cả hai vế cho x2 

\(\Rightarrow\left(x+27+\frac{180}{x}\right)\left(x+28+\frac{180}{x}\right)=2\)

Đặt \(a=x+\frac{180}{x}\)

\(\Rightarrow\left(a+27\right)\left(a+28\right)=2\)

\(\Rightarrow a^2+56a+756=2\)

\(\Rightarrow a^2+56a+754=0\)

tìm nghiệm rồi thế vào :

2 tháng 4 2017

a, \(\left|5x-4\right|\ge6\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4\ge6\\5x-4\le-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-\dfrac{2}{5}\end{matrix}\right.\)

2 tháng 4 2017

a) <=> (5x - 2)2 ≥ 62 <=> (5x – 4)2 – 62 ≥ 0

<=> (5x - 4 + 6)(5x - 4 - 6) ≥ 0 <=> (5x + 2)(5x - 10) ≥ 0

Bảng xét dấu:

Từ bảng xét dấu cho tập nghiệm của bất phương trình:

T = ∪ [2; +∞).

b) <=>

<=>

<=>

<=>

Tập nghiệm của bất phương trình T = (-; - 5) ∪ (- 1; 1) ∪ (1; +).

15 tháng 4 2017

a) ĐKXĐ: 2x + 3 ≥ 0. Bình phương hai vế thì được:

(3x – 2)2 = (2x + 3)2 => (3x - 2)2 – (2x + 3)2 = 0

⇔ (3x -2 + 2x + 3)(3x – 2 – 2x – 3) = 0

=> x1 = (nhận), x2 = 5 (nhận)

Tập nghiệm S = {; 5}.

b) Bình phương hai vế:

(2x – 1)2 = (5x + 2)2 => (2x - 1 + 5x + 2)(2x – 1 – 5x – 2) = 0

=> x1 = , x2 = -1.

c) ĐKXĐ: x ≠ , x ≠ -1. Quy đồng rồi khử mẫu thức chung

(x – 1)|x + 1| = (2x – 3)(-3x + 1)

  • Với x ≥ -1 ta được: x2 – 1 = -6x2 + 11x – 3 => x1 = ;
    x2 = .
  • Với x < -1 ta được: -x2 + 1 = -6x2 + 11x – 3 => x1 = (loại vì không thỏa mãn đk x < -1); x2 = (loại vì x > -1)

Kết luận: Tập nghiệm S = {; }

d) ĐKXĐ: x2 +5x +1 > 0

  • Với x ≥ ta được: 2x + 5 = x2 + 5x + 1
    => x1 = -4 (loại); x2 = 1 (nhận)
  • Với x < ta được: -2x – 5 = x2 + 5x + 1

=> x1 =-6 (nhận); x2 = -1 (loại).

Kết luận: Tập nghiệm S = {1; -6}.

4 tháng 5 2017

a) \(m\left(m-6\right)x+m=-8x+m^2-2\)
\(\Leftrightarrow x\left(m^2-6m+8\right)=m^2-m-2\)
- Xét \(m^2-6m+8=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=2\end{matrix}\right.\)
Th1. Thay \(m=4\) vào phương trình ta có:
\(0.x=10\) (vô nghiệm)
Th2. Thay \(m=2\) vào phương trình ta có:
\(0.x=0\) (luôn đúng với mọi \(x\in R\))
- Xét: \(m^2-6m+8\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne4\\m\ne2\end{matrix}\right.\)
Khi đó phương trình có nghiệm duy nhất là:
\(x=\dfrac{m^2-m-2}{m^2-6m+8}\)
Biện luận:
- \(m=4\) phương trình vô nghiệm.
- \(m=2\) phương trình luôn có nghiệm.
- \(m\ne4\)\(m\ne2\) phương trình có nghiệm duy nhất là:
\(x=\dfrac{m^2-m-2}{m^2-6m+8}\)

4 tháng 5 2017

b) Đkxđ: \(x\ne-1\)
\(\dfrac{\left(m-x\right)x+3}{x+1}=2m-1\)\(\Leftrightarrow\left(m-x\right)x+3=\left(2m-1\right)\left(x+1\right)\) \(\Leftrightarrow-x^2+x\left(1-m\right)+4-2m=0\) (*)
Xét (*) có nghiệm \(x=-1\) .
Khi đó: \(-\left(-1\right)^2+\left(-1\right)\left(1-m\right)+4-2m=0\)\(\Leftrightarrow m=2\)
Xét \(m=2\) thay vào phương trình ta có:
\(\dfrac{\left(2-x\right)x+3}{x+1}=2.2-1\Leftrightarrow\left\{{}\begin{matrix}-x^2+2x+3=0\\x\ne-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\x\ne-1\end{matrix}\right.\)\(\Leftrightarrow x=3\)
Vậy với m = 2 thì phương trình có nghiệm x = 3.
Xét \(m\ne2\)
\(\Delta=\left(1-m\right)^2-4.\left(-1\right).\left(4-2m\right)=\)\(m^2-10m+17\)
Nếu \(\Delta=0\Leftrightarrow m^2-10m+17=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=5+2\sqrt{2}\\m=5-2\sqrt{2}\end{matrix}\right.\)
Phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5+2\sqrt{2}\right)}{2}=-2-\sqrt{2}\left(\ne-1\right)\) nếu \(m=5+2\sqrt{2}\).
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5-2\sqrt{2}\right)}{2}=-2+\sqrt{2}\left(\ne-1\right)\)  nếu \(m=5-2\sqrt{2}\).
Nếu \(\Delta>0\Leftrightarrow m^2-10m+17>0\)\(\Leftrightarrow\left(m-5+2\sqrt{2}\right)\left(m-5-2\sqrt{2}>0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}m>5+2\sqrt{2}\\m< 5-2\sqrt{2}\end{matrix}\right.\) thì phương trình có hai nghiệm phân biệt là:
\(x_1=\dfrac{-\left(1-m\right)+\sqrt{m^2-10m+17}}{-2}\)
\(x_1=\dfrac{-\left(1-m\right)-\sqrt{m^2-10m+17}}{-2}\)
Biện luận:
Nếu \(\Delta< 0\Leftrightarrow5-2\sqrt{2}< m< 5+2\sqrt{2}\) thì phương trình vô nghiệm.
Biện luận:
Với \(m=5-2\sqrt{2}\) thì phương trình có nghiệm kép là:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5-2\sqrt{2}\right)}{2}=-2+\sqrt{2}\)
Với \(m=5-2\sqrt{2}\) thì phương trình có nghiệm kép là:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5+2\sqrt{2}\right)}{2}=-2-\sqrt{2}\)
Với  m = 2 thì phương trình có duy nhất nghiệm là: x = 3
Với \(m>5+2\sqrt{2}\) hoặc \(m< 5-2\sqrt{2}\) thì phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(1-m\right)+\sqrt{m^2-10m+17}}{-2}\);
\(x_1=\dfrac{-\left(1-m\right)-\sqrt{m^2-10m+17}}{-2}\)
Với \(5-2\sqrt{2}< m< 5+2\sqrt{2}\)  và \(m\ne2\) thì phương trình vô nghiệm.

5 tháng 5 2017

a) \(2m\left(x-2\right)+4=\left(3-m^2\right)x\)
\(\Leftrightarrow x\left(m^2+2m-3\right)=4m-4\)
​Xét \(m^2+2m-3=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\).
​Với \(m=1\) thay vào phương trình ta được:
\(0x=0\) luôn nghiệm đúng \(\forall x\in R\).
​Với \(m=-3\) thay vào phương trình ta được:
\(0x=4.\left(-3\right)-4\)\(\Leftrightarrow0x=-16\) phương trình vô nghiệm.
​Xét \(m^2+2m-3\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-3\end{matrix}\right.\).
Khi đó phương trình có nghiệm duy nhất: \(x=\dfrac{4}{m+3}\).
​Biện luận:
​Với m = 1 phương trình nghiệm đúng với mọi x thuộc R.
​Với m = -3 hệ vô nghiệm.
​Với \(\left\{{}\begin{matrix}m\ne1\\m\ne-3\end{matrix}\right.\) phương trình có nghiệm duy nhất là: \(x=\dfrac{4}{m+3}\).

5 tháng 5 2017

b​) Đkxđ: \(x\ne\dfrac{1}{2}\).
\(pt\Leftrightarrow\left(m+3\right)x=\left(2x-1\right)\left(3m+2\right)\)
\(\Leftrightarrow\left(5m+1\right)x=3m+2\). (*)
​Xét \(5m+1=0\Leftrightarrow m=\dfrac{-1}{5}\) thay vào phương trình ta có:
\(0x=\dfrac{7}{5}\) phương trình vô nghiệm.
​Xét \(5m+1\ne0\Leftrightarrow m\ne\dfrac{-1}{5}\).
​Khi đó (*) có nghiệm là: \(x=\dfrac{3m+2}{5m+1}\).
​Để \(x=\dfrac{3m+2}{5m+1}\) là nghiệm của phương trình thì:
\(x=\dfrac{3m+2}{5m+1}\ne\dfrac{1}{2}\)\(\Leftrightarrow2\left(3m+2\right)\ne5m+1\)\(\Leftrightarrow m\ne-3\).
​Biện luận:
​Với \(m=-\dfrac{1}{5}\) hoặc \(m=-3\) phương trình vô nghiệm.
​Với \(\left\{{}\begin{matrix}m\ne-\dfrac{1}{5}\\m\ne-3\end{matrix}\right.\) phương trình có nghiệm duy nhất là: \(x=\dfrac{3m+2}{5m+1}\).

7 tháng 4 2017

lời giải

a) \(\left\{{}\begin{matrix}-2x+\dfrac{3}{5}>\dfrac{2x-7}{3}\left(1\right)\\x-\dfrac{1}{2}< \dfrac{5\left(3x-1\right)}{2}\left(2\right)\end{matrix}\right.\)

(1)\(\Leftrightarrow\)

\(\dfrac{3}{5}+\dfrac{7}{3}>\left(\dfrac{2}{3}+2\right)x\)

\(\dfrac{44}{15}>\dfrac{8}{3}x\) \(\Rightarrow x< \dfrac{44.3}{15.8}=\dfrac{11}{5.2}=\dfrac{11}{10}\)

Nghiêm BPT(1) là \(x< \dfrac{11}{10}\)

(2) \(\Leftrightarrow2x-1< 15x-5\Rightarrow13x>4\Rightarrow x>\dfrac{4}{13}\)

Ta có: \(\dfrac{4}{13}< \dfrac{11}{10}\) => Nghiệm hệ (a) là \(\dfrac{4}{13}< x< \dfrac{11}{10}\)

30 tháng 3 2017

a)\(\left\{{}\begin{matrix}2x-3y=1\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(3-2y\right)-3y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6-7y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=3-2\cdot\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=\dfrac{11}{7}\end{matrix}\right.\)b) Biểu diễn lại một biến theo một biến như pt trên rồi giải, ta có :

\(\left\{{}\begin{matrix}2x+4y=5\\4x-2y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{10}\\y=\dfrac{4}{5}\end{matrix}\right.\)

c) Cách làm tương tự như pt a ta có :

\(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}y=\dfrac{2}{3}\\\dfrac{1}{3}x-\dfrac{3}{4}y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{8}\\y=-\dfrac{1}{6}\end{matrix}\right.\)

d) Tương tự ta có :

\(\left\{{}\begin{matrix}0,3x-0,2y=0,5\\0,5x+0,4y=1,2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

1 tháng 3 2018

|3x+4)/(x-2)| <=3

<=>|3 +10/(x-2) | <=3

10/(x-2) =t

<=> |3+t| <=3

9 +6t +t^2 <=9 <=> -6<=t <=0

10/(x-2) <=0 => x<2

10/(x-2) >=-6 <=>5/(x-2)>=-3

<=>5 <=-3(x-2) <=>3x <=10-5 =5 => x <=5/3

kết luận x<= 5/3

17 tháng 3 2020

a) \(\left|\frac{3x+4}{x-2}\right|< =3̸\) đk: x\(\ne\) 2

BPT \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\frac{3x+4}{x-2}\ge-3\\\frac{3x+4}{x-2}\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{3x+4}{x-2}+3\ge0\\\frac{3x+4}{x-2}-3\le0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}\frac{6x-2}{x-2}\ge0\\\frac{10}{x-2}\le0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le\frac{1}{3}\\x>2\end{matrix}\right.\\x< 2\end{matrix}\right.\Rightarrow}x\le\frac{1}{3}}\)

b) \(\left|\frac{2x-1}{x-3}\right|\ge1\) đk: x\(\ne\) 3

BPT \(\Leftrightarrow\left[{}\begin{matrix}\frac{2x-3}{x-3}\le-1\\\frac{2x-3}{x-3}\ge1\end{matrix}\right.\)

ta có:

+) \(\frac{2x-3}{x-3}\le-1\Leftrightarrow\frac{2x-3}{x-3}+1\le0\Leftrightarrow\frac{3x-6}{x-3}\le0\Leftrightarrow2\le x< 3\)

+) \(\frac{2x-3}{x-3}\ge1\Leftrightarrow\frac{2x-3}{x-3}-1\ge0\Leftrightarrow\frac{x}{x-3}\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\x>3\end{matrix}\right.\)

vậy tập nghiệm là: \((-\infty;0]\cup[2;3)\cup(3;+\infty)\)