Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{x+16}\right)^2=\left(\sqrt{x+4}+\sqrt{x+9}\right)^2\)
\(\Leftrightarrow x+1+x+16+2.\sqrt{\left(x+1\right).\left(x+16\right)}=x+4+x+9+2.\sqrt{\left(x+4\right).\left(x+9\right)}\)
\(\Leftrightarrow2x+17+2.\sqrt{\left(x+1\right).\left(x+16\right)}=2x+13+2.\sqrt{\left(x+4\right).\left(x+9\right)}\)
\(\Leftrightarrow4+2.\sqrt{\left(x+1\right)\left(x+16\right)}=2.\sqrt{\left(x+4\right).\left(x+9\right)}\)
\(\Leftrightarrow2.\left(2+\sqrt{\left(x+1\right)\left(x+16\right)}\right)=2.\sqrt{\left(x+4\right).\left(x+9\right)}\)
\(\Leftrightarrow\sqrt{x^2+17x+16}+1=\sqrt{x^2+13x+36}\)
Bình phương 2 vế ta được
\(x^2+17x+16+1+2.\sqrt{x^2+17x+16}=x^2+13x+36\)
\(\Leftrightarrow2.\sqrt{x^2+17x+16}=-4x+19\)
Bình phương 2 vế ta được
\(2x^2+34x+32=16x^2-152x+361\)
\(\Leftrightarrow14x^2-186x+329=0\)
\(\Delta=\left(-186\right)^2-4.14.329=16172\)
\(x_1=\frac{186-\sqrt{16172}}{26}=2,262723898\)
\(x_2=\frac{186+\sqrt{16172}}{26}=12,04496841\)
\(\sqrt{x+1}+\sqrt{x+16}=\sqrt{x+4}+\sqrt{x+9}\)
\(\left(\sqrt{x+1}+\sqrt{x+16}\right)^2=\left(\sqrt{x+4}+\sqrt{x+9}\right)^2\)
\(x+1+x+16+2\sqrt{\left(x+1\right)\left(x+16\right)}=x+4+x+9+2\sqrt{\left(x+4\right)\left(x+9\right)}\)
\(2x+17+2\sqrt{x^2+17x+16}=2x+13+2\sqrt{x^2+13x+36}\)
\(4+2\sqrt{x^2+17x+16}=2\sqrt{x^2+13x+36}\)
\(2+\sqrt{x^2+17x+16}=\sqrt{x^2+13x+36}\)
\(\left(2+\sqrt{x^2+17x+16}\right)^2=\left(\sqrt{x^2+13x+36}\right)^2\)
\(4+x^2+17x+16+4\sqrt{x^2+17x+16}=x^2+13x+36\)
\(4\sqrt{x^2+17x+16}=-4x+16\)
\(\sqrt{x^2+17x+16}=-x+4\)
\(\hept{\begin{cases}-x+4\ge0\\x^2+17x+16=\left(-x+4\right)^2\end{cases}}\)
\(\hept{\begin{cases}-x\ge-4\\x^2+17x+16=x^2-8x+16\end{cases}}\)
\(\hept{\begin{cases}x\le4\\25x=0\end{cases}}\)
\(\hept{\begin{cases}x\le4\\x=0\end{cases}}\)
\(\Rightarrow x=0\)
đk: \(x\ge4\)
\(\Leftrightarrow\sqrt{x}+\sqrt{x+9}=\sqrt{x-1}+\sqrt{x-4}\)
\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x-5+2\sqrt{x^2-5x+4}\)
\(\Leftrightarrow14+2\sqrt{x^2+9x}=2\sqrt{x^2-5x+4}\)
\(\Leftrightarrow7+\sqrt{x^2+9x}=\sqrt{x^2-5x+4}\)
\(\Leftrightarrow49+14\sqrt{x^2+9x}+x^2+9x=x^2-5x+4\)
\(\Leftrightarrow14\sqrt{x^2+9x}=-14x-45\)
\(\Leftrightarrow\hept{\begin{cases}196\left(x^2+9x\right)=196x^2+1260x+2025\\-14x-45\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}504x=2025\\x\le\frac{-45}{14}\end{cases}}\Leftrightarrow x=\frac{225}{56}\) (loại)
=> pt vô nhiệm
d/ Điều kiện xác định : \(4\le x\le6\)
Áp dụng bđt Bunhiacopxki vào vế trái của pt :
\(\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le\left(1^2+1^2\right)\left(x-4+6-x\right)\)
\(\Leftrightarrow\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le4\Leftrightarrow\sqrt{x-4}+\sqrt{6-x}\le2\)
Xét vế phải : \(x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\)
Suy ra pt tương đương với : \(\begin{cases}\sqrt{x-4}+\sqrt{6-x}=2\\x^2-10x+27=2\end{cases}\) \(\Leftrightarrow x=5\) (tmđk)
Vậy pt có nghiệm x = 5
a/ ĐKXĐ : \(x\ge0\)
\(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|\sqrt{x}-3\right|=1\) (1)
Tới đây xét các trường hợp :
1. Nếu \(x>9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+\sqrt{x}-3=1\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=9\) (ktm)
2. Nếu \(0\le x< 4\) thì pt (1) \(\Leftrightarrow2-\sqrt{x}+3-\sqrt{x}=1\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\) (ktm)
3. Nếu \(4\le x\le9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+3-\sqrt{x}=1\Leftrightarrow1=1\left(tmđk\right)\)
Vậy kết luận : pt có vô số nghiệm nếu x thuộc khoảng \(4\le x\le9\)
\(a,\sqrt{x+1}=\sqrt{2-x}\)
\(\Rightarrow x+1=2-x\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
a) \(ĐKXĐ:-1\le x\le2\)
Bình phương 2 vế ta có:
\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )
Vậy \(x=\frac{1}{2}\)
b) \(ĐKXĐ:x\ge1\)
\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)
\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )
Vậy \(x=65\)
c) \(ĐKXĐ:x\ge1\)
\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )
Vậy \(x=5\)
ĐKXĐ:.............
1.\(\sqrt{x^2-6x+9}=2x-1\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-1\)
\(\Leftrightarrow\left|x-3\right|=2x-1\)
................
\(2)\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Leftrightarrow\left|\sqrt{x}+2\right|=5x+2\)
3) \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=4\)
\(\Leftrightarrow\left|x-1\right|+\left|x+2\right|=4\)
\(\sqrt{25x^2-10x+1}=4x+9\)
\(\Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x+9\)
\(\Leftrightarrow\left|5x-1\right|=4x+9\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=4x+9\\5x-1=-4x-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-\frac{8}{9}\end{cases}}}\)
Vậy ...
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}-\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x+1}.\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)
Vậy ...
Phương trình vô nghiệm. ĐK x>0 thì so sánh từng phần tử thấy vế phải luôn lớn hơn vế trái