Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(-1\le x\le1\)
Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)
\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)
Khi đó phương trình đề trở thành:
\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)
Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):
\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:
\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)
\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)
Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm
Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)
Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)
a/ \(\text{ĐK: }....\Leftrightarrow x\le-3\text{ hoặc }x\ge0\)
+TH1: \(x\ge0\)
\(pt\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow x=0\text{ hoặc }\sqrt{x+1}+\sqrt{x+2}=\sqrt{x+3}\text{ (1)}\)
\(\left(1\right)\Leftrightarrow x+1+x+2+2\sqrt{\left(x+1\right)\left(x+2\right)}=x+3\)
\(\Leftrightarrow x+2\sqrt{\left(x+1\right)\left(x+2\right)}=0\text{ (vô nghiệm do }x\ge0\text{ nên }x+\sqrt{\left(x+1\right)\left(x+2\right)}>0\text{)}\)
\(+TH2:\text{ }x\le-3\)
\(pt\Leftrightarrow\sqrt{-x}\left(\sqrt{-x-1}+\sqrt{-x-2}-\sqrt{-x-3}\right)=0\)
\(\Leftrightarrow\sqrt{-x-1}+\sqrt{-x-2}=\sqrt{-x-3}\text{ }\left(do\text{ }x\le-3\Rightarrow\sqrt{-x}>\sqrt{3}\right)\)
\(\Leftrightarrow-x-1-x-2+2\sqrt{\left(-x-1\right)\left(-x-2\right)}=-x-3\)
\(\Leftrightarrow2\sqrt{\left(-x-1\right)\left(-x-2\right)}-x=0\text{ (vô nghiệm do }-x\ge3\text{)}\)
Vậy \(x=0\)
b/
\(\text{ĐK: }x\ge1\)
\(\text{Đặt }\sqrt{x-1}=t;\text{ }t\ge0\)
\(pt\text{ thành: }\left(t+1\right)^3+2t+t^2-1=0\)
\(\Leftrightarrow t^3+4t^2+5t=0\Leftrightarrow t\left(t^2+4t+5\right)=0\)
\(\Leftrightarrow t=0\vee t^2+4t+5=0\text{ (Vô nghiệm)}\)
\(pt\text{ đã cho }\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x=1\)
Đặt \(t=\sqrt{x}-2\) , pt trở thành
\(\left(t+1\right)^3+\left(t-1\right)^3=8t^3\Leftrightarrow t^3+3t^2+3t+1+t^3-3t^2+3t-1=8t^3\)
\(\Leftrightarrow6t^3-6t=0\Leftrightarrow t\left(t-1\right)\left(t+1\right)=0\)
=> t = 0 hoặc t = 1 hoặc t = -1
Từ đó suy ra x.
Đặt \(\hept{\begin{cases}\sqrt[3]{2-x}=a\\\sqrt[3]{x+7}=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2+b^2-ab=3\\a^3+b^3=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2-ab=3\\\left(a+b\right)\left(a^2-ab+b^2\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2-ab=3\\a+b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\)
ĐKXĐ: \(\left[{}\begin{matrix}x=0\\x\ge3\end{matrix}\right.\)
Với \(x=0\) là nghiệm
Với \(x\ge3\), chia 2 vế cho \(\sqrt{x}\) ta được:
\(\sqrt{x+1}+\sqrt{x+2}=\sqrt{x-3}\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{x+2}-\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x+1}+\dfrac{5}{\sqrt{x+2}+\sqrt{x-3}}=0\) (vô nghiệm do vế trái luôn dương)
Vậy pt có nghiệm duy nhất \(x=0\)