K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2016

\(\Leftrightarrow\sqrt{x^2\left(x^2-8x+16\right)}+\left|\left(x-4\right)^2\right|=4\\ \)

\(\Leftrightarrow\left|x\right|\sqrt{\left(x-4\right)^2}+\left(x-4\right)^2=4\)

\(\Leftrightarrow\left|x\left(x-4\right)\right|+x^2-8x+16=4\)(1)

  • Nếu \(0\le x\le4\)thì x(x - 4) <= 0;  (1) <=> 4x - x2 + x2 - 8x + 12 =0 <=> 4x = 12 <=> x = 3 (trong khoảng đang xét)
  • Nếu \(\orbr{\begin{cases}x< 0\\x>4\end{cases}}\)thì x(x-4) > 0 (1) <=> x2 - 4x + x2 - 8x + 12 = 0 <=> 2x2 -12x + 12 = 0 <=> x2 - 6x +6 = 0 \(\Leftrightarrow\orbr{\begin{cases}x_1=3-\sqrt{3}\\x_2=3+\sqrt{3}\end{cases}}\)loại nghiệm x1 vì không thuộc khoảng đang xét.

KL: PT có 2 nghiệm là x = 3 và x = \(3+\sqrt{3}\).

27 tháng 8 2017

gọi số bị chia là a, số chia là b, gọi thương của 2 số là \frac{a}{b}

Theo đề bài, ta có:

a : b  

(a+73) : (b+4) =  dư 5

do đó
a + 73  x (b+4) + 5

a + 73 =  x b + \frac{a}{b} x 4 + 5

a + 73 - 5 = a +  

a + 68 = a +  

a - a + 68 =  

68 =  

hay  

 

 

Vậy thương của phép chia là 17

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

27 tháng 8 2017

Khó nhờ!

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

29 tháng 12 2016

đặt ẩn bình phương.....