Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(9x^2-6x=a\) . Phương trình trở thành :
\(\sqrt{a+2}+\sqrt{5a+9}=\sqrt{-a+8}\)
Ta có :
\(\sqrt{9x^2-6x+2}=\sqrt{\left(9x^2-6x+1\right)+1}=\sqrt{\left(3x-1\right)^2+1}\ge\sqrt{1}=1\)
\(\sqrt{45x^2-30x+9}=\sqrt{5\left(9x^2-6x+1\right)+4}=\sqrt{5\left(3x-1\right)^2+4}\ge\sqrt{4}=2\)
\(\sqrt{6x-9x^2+8}=\sqrt{-\left(9x^2-6x+1\right)+9}=\sqrt{-\left(3x-1\right)^2+9}\le3\)
\(\Rightarrow VT\ge3\ge VP\)
mÀ đề lại cho \(VT=VP\) \(\Rightarrow\hept{\begin{cases}\sqrt{\left(3x-1\right)^2+1}=1\\\sqrt{\left(3x-1\right)^2+4}=2\\\sqrt{-\left(3x-1\right)^2+9}=3\end{cases}\Rightarrow x=\frac{1}{3}}\)
Vậy \(x=\frac{1}{3}\)
a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)
Đặt \(x-3=t\) pt thành
\(\sqrt{t\left(t-6\right)}-t=0\)
\(\Leftrightarrow t^2-6t=t^2\)
\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)
b)\(\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
Đặt \(\sqrt{x^2-4}=t\) pt thành
\(t=t^2\Rightarrow t\left(1-t\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).
Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\)
Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
ĐKXĐ: ...
\(\Leftrightarrow\sqrt{\left(3x-1\right)^2+1}+\sqrt{5\left(3x-1\right)^2+4}=\sqrt{9-\left(3x-1\right)^2}\)
Do \(\left(3x-1\right)^2\ge0\Rightarrow\left\{{}\begin{matrix}VT\ge\sqrt{1}+\sqrt{4}=3\\VP\le\sqrt{9}=3\end{matrix}\right.\)
\(\Rightarrow VT\ge VP\)
Dấu "" xảy ra khi và chỉ khi \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)
Vậy pt có nghiệm duy nhất \(x=\frac{1}{3}\)