Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HSG Toán 9 tỉnh Nghệ An bảng A năm 2018-2019
Làm: ĐK \(x\ge\frac{-3}{2}\)
\(\sqrt{2x+3}=\frac{8x^3+4x}{2x+5}\Leftrightarrow\left(2x+5\right)\sqrt{2x+3}=8x^3+4x\)
\(\Leftrightarrow\left(\sqrt{2x+3}\right)^2+2\sqrt{2x+3}=\left(2x\right)^3+2\cdot2x\)
Đặt \(a=\sqrt{2x+3}\ge0;b=2x\) ta có:
\(a^3+2a=b^3+2b\Leftrightarrow\left(a-b\right)\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+2\right]=0\Leftrightarrow a=b\)
\(\Rightarrow\sqrt{2x+3}=2x\Leftrightarrow\hept{\begin{cases}2x\ge0\\2x+3=4x^2\end{cases}\Leftrightarrow x=\frac{1+\sqrt{13}}{4}}\)
Vậy \(x=\frac{1+\sqrt{13}}{4}\)
ĐKXĐ: ...
\(\Leftrightarrow\left(2x+5\right)\sqrt{2x+3}=8x^3+4x\)
\(\Leftrightarrow\left(2x+3\right)\sqrt{2x+3}+2\left(\sqrt{2x+3}\right)=8x^3+4x\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\\2x=b\end{matrix}\right.\)
\(\Rightarrow a^3+2a=b^3+2b\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+2\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow2x=\sqrt{2x+3}\) (\(x\ge0\))
\(\Leftrightarrow4x^2-2x-3=0\)
\(vt=\sqrt{-\left(x-2\right)^2+2}+\sqrt{-2\left(x-2\right)^2+3}\)
=>\(VT=< \sqrt{2}+\sqrt{3}\)
xảy ra dấu = khi và chỉ khi x=2
\(ĐKXĐ:x\ge-\frac{1}{2}\)
Đặt: \(\sqrt{2x+1}=a\left(a\ge0\right)\)và \(\sqrt{4x^2-2x+1}=b\left(b>0\right)\)
Phương trình đã cho được viết dưới dạng:
\(a+3b=3+ab\Leftrightarrow\left(1-b\right)\left(a-3\right)=0\)
- \(b=1\Rightarrow\sqrt{4x^2-2x+1}=1\Leftrightarrow4x^2-2x=0\)
\(\Leftrightarrow2x\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}\)
- \(a=3\Rightarrow\sqrt{2x+1}=3\Leftrightarrow2x+1=9\)
\(\Leftrightarrow x=4\left(tmđk\right)\)
Vậy phương trình có \(n_0S=\left\{0;\frac{1}{2};4\right\}\)
Các bước làm:
Thử nghiệm: x = 2 là nghiệm
------> Thử xem các cách làm tất nhiên là không thể bình phương -----> Như vậy thường thì cô sẽ nghĩ ra hai cách là liên hợp và đặt ẩn phụ
+) Cách liên hợp: Căn đầu tiên thay 2 vào kết quả 1 ; căn thứ 2 thay 2 vào đc kết quả là 3
-----------------------------------------------------------------------------------------------------------------------
Giải: ĐK: \(1\le x\le3\) ( không cần thiết phải giải luôn điều kiện ra như thế nhé!
\(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)
<=> \(\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x^3-4x^2+4x+4-4\)
<=> \(\frac{-\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{-2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\) ( hình như là đẹp)
<=> \(\left(x-2\right)^2\left[x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}\right]=0\)( cái trong ngoặc vuông rõ ràng là > 0 với mọi \(1\le x\le3\))
<=> x - 2 = 0
<=> x = 2 thỏa mãn đk
https://dehocsinhgioi.com/de-thi-chon-hsg-tinh-lop-9-cap-thcs-vong-tinh-nam-2018-2019-tinh-nghe-an-bang-a-co-dap-an/
bạn tham khảo nhé
bài toán hay