K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

e chịu 

23 tháng 2 2022

@@@@@

Khó quá 

Ai thấy khó bỏ đi :)))

HT

4 tháng 7 2019

1   ĐKXD \(x\ge1\)

.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)

Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)

=> \(2b^2+3a^2=2x^2+5x-1\)

=> \(2b^2+3a^2-7ab=0\)

<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)

\(a=2b\)

=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)

=> \(4x^2+3x+5=0\)vô nghiệm

\(a=\frac{1}{3}b\)

=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)

=> \(x^2-8x+10=0\)

<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)

Vậy \(x=4+\sqrt{6}\)

4 tháng 7 2019

ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)

\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)

<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)

 \(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)

<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)

Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)

nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)

Vậy x=-2

Em kiểm tra lại đề bài câu trên nhé

26 tháng 9 2016

1) Tập xác định Mọi \(x\ge1\)
Vậy \(\sqrt{3x}-\sqrt{x+1}=\sqrt{2x+3}-\sqrt{2x-2}\)

Bình phương 2 vế rút gọn được \(x^2-x-6=0\)

\(\Rightarrow\)\(x=3\)

2) Điều kiện xác định là \(\hept{\begin{cases}x-\frac{1}{4}\ge0\\2-2x\ge0\end{cases}}\)\(\Rightarrow\)\(\frac{1}{4}\le x\le1\)

Đặt \(\sqrt{x-\frac{1}{4}}=U\)\(\Rightarrow x=U^2+\frac{1}{4}\) Với điều kiện xác đinh trên thì \(U\ge0\) , thay vào phương trình gốc được

\(2\left(U^2+\frac{1}{4}\right)+\sqrt{U^2+\frac{1}{4}+U}-2=0\)

\(\Leftrightarrow2U^2+\sqrt{\left(U+\frac{1}{2}\right)^2}-\frac{3}{2}=0\)

\(\Leftrightarrow2U^2+\left(U+\frac{1}{2}\right)-\frac{3}{2}=0\)

Đến đây quá đơn giản vì đây là pt bậc 2 bình thường , kết hợp điều kiện xác định giải ta được

\(U=\frac{1}{2}\Leftrightarrow\sqrt{x-\frac{1}{4}}=\frac{1}{2}\)

Vậy \(x=\frac{1}{2}\)

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

18 tháng 8 2015

Điều kiện xác định phương trình \(x\ge0,2x^2+3x-3\ge0.\)

Ta dùng phép nhân liên hợp phương trình viết lại dưới dạng

\(\sqrt{3x^2-2x+1}+x-2=\sqrt{2x^2+3x-3}-\sqrt{x}\)       (1)

\(\Leftrightarrow\frac{2x^2+2x-3}{\sqrt{3x^2-2x+1}-x+2}=\frac{2x^2+2x-3}{\sqrt{2x^2+3x-3}+\sqrt{x}}\)

Trường hợp 1. \(2x^2+2x-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{7}}{2}\)  (thỏa mãn).

Trường hợp 2.  \(\sqrt{3x^2-2x+1}-x+2=\sqrt{2x^2+3x-3}+\sqrt{x}\)      (2)

Lấy (1)+(2) cho ta \(3x^2-2x+1=2x^2+3x-3\Leftrightarrow x^2-5x+4=0\Leftrightarrow x=1,4.\)  Tuy nhiên x=4 không thỏa mãn.

Vậy phương trình có ba nghiệm \(x=1,\frac{-1\pm\sqrt{7}}{2}\)

 

ĐK \(\hept{\begin{cases}x\ge1\\\frac{-1-\sqrt{3}}{2}\le x\le\frac{-1+\sqrt{3}}{2}\end{cases}}\)

\(PT\Leftrightarrow2x^3-x^2-3x-1+\sqrt{2x^3-3x+1}-\sqrt[3]{x^2+2}=0\)

Đặt \(\sqrt{2x^3-3x+1}=a,\sqrt[3]{x^2+2}=b\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a^2-b^3+a-b=0\)

\(\Rightarrow a=b=1\)

Tính ra

8 tháng 3 2020

Bạn giải thích cho mình ba dòng cuối đi

ái chà chà