Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tui làm bên học24 r` mà, muốn đưa link mà lỗi, thôi làm lại :(
\(pt\Leftrightarrow x^9-12x^6+48x^3-64=\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+8\sqrt[3]{\left(x^2+4\right)^2}+16\)
\(\Leftrightarrow x^9-12x^6+48x^3-128=\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2-16+8\sqrt[3]{\left(x^2+4\right)^2}-32\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\left(x^6-4x^3+16\right)=\frac{\left(x^2+4\right)^4-4096}{\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+16}+\frac{512\left(x^2+4\right)^2-32768}{8\sqrt[3]{\left(x^2+4\right)^2}+32}\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\left(x^6-4x^3+16\right)=\frac{\left(x-2\right)\left(x+2\right)\left(x^2+12\right)\left(x^4+8x^2+80\right)}{\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+16}+\frac{512\left(x-2\right)\left(x+2\right)\left(x^2+12\right)}{8\sqrt[3]{\left(x^2+4\right)^2}+32}\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\left(x^6-4x^3+16\right)-\frac{\left(x-2\right)\left(x+2\right)\left(x^2+12\right)\left(x^4+8x^2+80\right)}{\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+16}+\frac{512\left(x-2\right)\left(x+2\right)\left(x^2+12\right)}{8\sqrt[3]{\left(x^2+4\right)^2}+32}=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^2+2x+4\right)\left(x^6-4x^3+16\right)-\frac{\left(x+2\right)\left(x^2+12\right)\left(x^4+8x^2+80\right)}{\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+16}+\frac{512\left(x+2\right)\left(x^2+12\right)}{8\sqrt[3]{\left(x^2+4\right)^2}+32}\right]=0\)
Dễ thấy: pt trong ngoặc vuông vô nghiệm
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(x\left(3+x\right)\left(x^2+6\right)=4\left(x^2-4x+4\right)\)
\(3x^3+18x+x^4+6x^2=4x^2-16x+16\)
\(3x^3+18x+x^4+6x^2-4x^2+16x-16=0\)
\(3x^2+34x+x^4+2x^2-16=0\)
=> vô nghiệm
Đặt \(a=2x^2+x-2014\) , \(b=x^2-5x-2013\)
thì \(a^2+4b^2=4ab\Leftrightarrow a^2-4ab+4b^2=0\Leftrightarrow\left(a-2b\right)^2=0\)
Thay vào được \(\left[\left(2x^2+x-2014\right)-2\left(x^2-5x-2013\right)\right]^2=0\)
\(\Leftrightarrow11x+2012=0\Leftrightarrow x=-\frac{2012}{11}\)
x^8 + 2x^6 + 2x^4 + x^2 + 1 - 4x^6 = 12( x^4 - 2x^2 - 1 ) - 4
x^8 + 2x^4 + x^2 + 1 - 2x^6 = 12x^4 - 24x^2 - 12 - 4
x^8 - 2x^6 = 12x^4 - 2x^4 - 24x^2 - x^2 - 16 - 1
x^8 - 2x^6 = 10x^4 - 25x^2 - 17
( x^2 )^4 - 2( x^2 )^3 = 10(x^2)^2 - 25x^2 - 17
0 = 10(x^2)^2 - ( x^2)^4 - 25x^2 + 2(x^2)^3 - 17
17 = (x^2)[ 10x^2 - (x^2)^3 - 25 + 2(x^2)^2 ]
17 = ( x^2 )[ 10x^2 - x^6 - 25 + 2x^4 ]
Botay.com.vn
đề <=> \(\left(x^2+2x\right)\left(x^2+2x-8\right)\)\(=-7\) (1)
đặt x2+2x-4=a
từ (1) => (a-4)(a+4)= -7
<=> a2-16=-7
<=> a2-9=0
<=>(a-3)(a+3)=0
=> a=3 hoặc a=-3
thay số vào làm nốt nhé
Đặt \(\hept{\begin{cases}\sqrt{x^3-4}=a\\4=x^3-a^2\end{cases}}\)
\(\Rightarrow a^3=\sqrt[3]{\left(x^2+4\right)^2}+4\)
\(\Leftrightarrow x^2+a^3=x^2+\sqrt[3]{\left(x^2+4\right)^2}+4\)
\(\Leftrightarrow a^3+\sqrt[3]{\left(a^2+4\right)^2}=x^2+\sqrt[3]{\left(x^2+4\right)^2}+4\)
\(\Leftrightarrow a^3+a^2+\sqrt[3]{\left(a^2+4\right)^2}=x^3+x^2+\sqrt[3]{\left(x^2+4\right)^2}\)
\(\Leftrightarrow a=x\)
\(\Leftrightarrow x^3-4=x^2\)
\(\Leftrightarrow x=2\)
Áp dụng bảng tam giác Pascal ta có :
\(\left(x-2\right)^4=x^4-8x^3+24x^2-32x+16\)
\(\left(x+2\right)^4=x^4+8x^3+24x^2+32x+16\)
\(\Rightarrow\left(x-2\right)^4+\left(x+2\right)^4=2x^4+48x^2+32=626\)
\(\Leftrightarrow2x^4+48x^2-594=0\)
\(\Leftrightarrow2x^4-6x^3+6x^3-18x^2+66x^2-594=0\)
\(\Leftrightarrow2x^3\left(x-3\right)+6x^2\left(x-3\right)+66\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(2x^3+6x^2+66x+198\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[2x^2\left(x+3\right)+66\left(x+3\right)\right]\left(x-3\right)=0\)
\(\Leftrightarrow2\left(x+3\right)\left(x^2+33\right)\left(x-3\right)=0\)
\(\Rightarrow x=\pm3\)
Vậy nghiệm \(S=\left\{\pm3\right\}\)