\(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

Xét:

1.Nếu \(x=2016\)hoặc \(x=2017\)thì thỏa mãn đề bài

2. Nếu \(x< 2016\)thì l\(x-2016\)l\(^{2016}\)>0, lx-2017l\(^{2017}\)>1

=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1 => vô nghiệm 

3.Nếu x>2017 thì lx-2016l\(^{2016}\)>1,lx-2017l\(^{2017}\)>0

=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1=> vô nghiệm

Vậy phương trình có 2 nghiệm là ..................

2 tháng 11 2016

Bài trên mình đã giải rồi, hai nghiệm là x = 2016 và x = 2017

2 tháng 9 2016

\(\left|x-2015\right|^{2016}+\left|x-2016\right|^{2017}=1\)

Có: \(\left|x-2015\right|^{2016}\ge0;\left|x-2016\right|^{2017}\ge0\)

TH1: \(\hept{\begin{cases}\left|x-2015\right|^{2016}=1\\\left|x-2016\right|^{2017}=0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2015\right|=1\\\left|x-2016\right|=0\end{cases}}\)

THa: \(x-2015=-1\Rightarrow x=2014\)

Thay vào: \(2014-2016\ne0\) ( loại)

THb: \(x-2015=1\Rightarrow x=2016\)

Thay vào:  \(2016-2016=0\)( chọn )

TH2: \(\hept{\begin{cases}\left|x-2015\right|^{2016}=0\\\left|x-2016\right|^{2017}=1\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2015\right|=0\\\left|x-2016\right|=1\end{cases}}\)

THc: \(x-2016=-1\Rightarrow x=2015\)

Thay vào:  \(2015-2015=0\)( chọn )

THd: \(x-2016=1\Rightarrow x=2017\)

Thay vào: \(2017-2015\ne0\)

Vậy: x = 2016 hoặc x = 2015

2 tháng 9 2016

x=2015

23 tháng 4 2017

nếu x<2017 thì x-2017<2017

vì tổng của các giá trị tuyệt đối không thể là số âm nên x<2017 loại.

xét \(x\ge2017\), ta có:\(\left|x-2014\right|=x-2014\\ \left|2x-2015\right|=2x-2015\\\left|3x-2016\right|=3x-2016\)

khi đó:

\(x-2014+2x-2015+3x-2016=x-2017\\ \Leftrightarrow6x=4028\\ \Leftrightarrow x=\dfrac{2014}{3}\left(loại\right)\)

vậy phương trình đã cho vô nghiệm.

10 tháng 5 2018

\(\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|=x-2017\)

Do \(\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|\ge0\forall x\)

\(\Rightarrow x-2017\ge0\\ \Leftrightarrow x\ge2017\)

\(\Rightarrow\left\{{}\begin{matrix}x-2014\ge3>0\\2x-2015\ge2019>0\\3x-2016\ge4035>0\end{matrix}\right.\)

\(pt\Leftrightarrow\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|=x-2017\\ \Leftrightarrow x-2014+2x-2015+3x-2016=x-2017\\ \Leftrightarrow6x-6045=x-2017\\ \Leftrightarrow6x-x=-2017+6045\\ \Leftrightarrow5x=4028\\ \Leftrightarrow x=\dfrac{4028}{5}\\ \)

Vậy pt có nghiệm \(x=\dfrac{4028}{5}\)

21 tháng 3 2019

\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)

\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)

\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)

\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)

\(ĐK:x\ge2016;y\ge2017;z\ge2018\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)

21 tháng 3 2019

nhân đôi 2 vế rồi chuyển vế trái sang vế phải, ta có:

\(\left(\sqrt{x-2016}-1\right)^2\) + \(\left(\sqrt{y-2017}-1\right)^2\)

\(\left(\sqrt{z-2018}-1\right)^2\)

= 0

12 tháng 11 2016

Nhận thấy: |x-2017| = |-x+2017|

Áp dụng BĐT: |a| + |b| \(\ge\) |a+b|

=> A = |x-2016| + |-x+2017| \(\ge\) |x-2016+-x+2017| = |1| = 1

Vậy MinA = 1 khi \(2016\le x\le2017\)

12 tháng 11 2016

\(A=\left|x-2016\right|+\left|x-2017\right|\)

Ta có : \(\begin{cases}\left|x-2016\right|\ge0\\\left|x-2017\right|\ge0\end{cases}\)

\(\Rightarrow\left|x-2016\right|+\left|x-2017\right|\ge0\)

\(\Rightarrow A\ge0\)

Dấu " = " xảy ra khi và chỉ khi \(\begin{cases}x-2016=0\\x-2017=0\end{cases}\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)

Vậy \(Min_A=0\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}.}\)

21 tháng 4 2017

Dễ thấy: \(\left\{{}\begin{matrix}\left|x+2016\right|\ge0\\\left|x+2017\right|\ge0\\\left|x+2018\right|\ge0\end{matrix}\right.\)\(\forall x\)

\(\Rightarrow\left|x+2016\right|+\left|x+2017\right|+\left|x+2018\right|\ge0\forall x\)

\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow10x\ge0\Rightarrow x\ge10\)

\(pt\Leftrightarrow\left(x+2016\right)+\left(x+2017\right)+\left(x+2018\right)=10x\)

\(\Leftrightarrow3x+6051=10x\)

\(\Leftrightarrow6051=7x\Rightarrow x=\dfrac{6051}{7}\)