K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2021

Ta có: \(\left(x-1\right)^3+\left(x+2\right)^3=\left(2x+1\right)^3\)

\(\Leftrightarrow\left(x-1\right)^3+\left(x+2\right)^3+\left(-2x-1\right)^3=0\)

Ta sẽ CM bổ đề sau:

Nếu \(a+b+c=0\Leftrightarrow a^3+b^3+c^3=3abc\)

Thật vậy, xét hiệu sau:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=0\cdot\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\cdot0=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\) (đpcm)

Áp dụng vào ta có: \(\left(x-1\right)+\left(x+2\right)+\left(-2x-1\right)=0\)

Khi đó: \(3\left(x-1\right)\left(x+2\right)\left(-2x-1\right)=0\)

\(\Leftrightarrow x\in\left\{1;-2;-\frac{1}{2}\right\}\)

3 tháng 3 2020

a, \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)

\(=>\frac{1-x+x+1}{x+1}+2=\frac{1}{x+1}+2\)

\(=>\frac{2}{x+1}=\frac{1}{x+1}\)

\(=>2x+2=x+1\)

\(=>2x-x=1-2=-1\)

\(=>x=-1\)

vậy nghiệm của phương trình trên là {-1}

3 tháng 3 2020

À quên ĐKXĐ của câu a là \(x\ne-1\)

Nên \(x\in\varnothing\)nhé :v

10 tháng 8 2020

Đặt: x -1 = a; x + 2 = b

=> 2x + 1 = a + b

=> Ta có pt mới: 

\(a^3+b^3=\left(a+b\right)^3\)

<=> \(3ab\left(a+b\right)=0\)

<=> \(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)hoặc a + b = 0

=> x-1=0 hoặc x+2=0 hoặc 2x+1=0

<=> x=1 hoặc x=-2 hoặc x=-1/2.

10 tháng 8 2020

<=> [(x-1)+(x+2)].[(x-1)2 - (x-1).(x+2) + (x+2)2 ] = (2x+1)2 

<=> (2x+1).[x2 -2x+1-(x2 -x-2)+x2 +4x+4] = (2x+1)3 

<=> x2 -2x+1-x2 +x+2+x2 +4x+4 = 4x2 +4x+1 (x khác -1/2)

<=> 3x2 +x-6=0 đến đây là PT bậc 2 rồi bạn tự làm nốt

16 tháng 8 2019

\(a.\Leftrightarrow x^2+x-6+2x^2+4x+2=x^2-6x+9-2x^2+4x\)

\(\Leftrightarrow4x^2+7x-13=0\)(pt vô nghiệm)

\(b.\Leftrightarrow x^3+3x^2+3x+1-x^2+2x+8=x^3-8+2x^2\)

\(\Leftrightarrow5x=-17\Rightarrow x=\frac{-17}{5}\)

Đặt \(t=x^2+2x+2\left(t\ge1\right)\)

\(c.\Leftrightarrow\frac{t-1}{t}+\frac{t}{t+1}=\frac{7}{6}\)\(\Leftrightarrow\frac{t^2-1+t^2}{t^2+t}=\frac{7}{6}\)\(\Leftrightarrow12t^2-6=7t^2+7t\)

\(\Leftrightarrow5t^2-7t-6=0\Rightarrow\orbr{\begin{cases}t=2\left(tm\right)\\t=\frac{-3}{5}\left(l\right)\end{cases}}\)

\(\Rightarrow x^2+2x+2=2\Rightarrow x=-2\)

\(\left(x-5\right)\left(x-1\right)=2x\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-5-2x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

Vậy............

\(5\left(x+3\right)\left(x-2\right)-3\left(x+5\right)\left(x+2\right)=0\)

\(\Leftrightarrow5\left(x^2+x-6\right)-3\left(x^2+7x+10\right)=0\)

\(\Leftrightarrow2x^2-16x-60=0\)

\(\Leftrightarrow x^2-8x-30=0\)

làm tiếp nhé!!!!!

10 tháng 8 2020

Bài làm:

Đặt \(\hept{\begin{cases}x-1=a\\x+2=b\end{cases}}\Rightarrow a+b=2x+1\)

\(Pt\Leftrightarrow a^3+b^3=\left(a+b\right)^3\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3-b^3=0\)

\(\Leftrightarrow3ab\left(a+b\right)=0\)

\(\Leftrightarrow3\left(x-1\right)\left(x+2\right)\left(2x+1\right)=0\)

Đến đây giải PT tích ra ta được: \(x\in\left\{-2;-\frac{1}{2};1\right\}\)

3 tháng 1 2019

Đặt \(\hept{\begin{cases}x-2=a\\x+1=b\end{cases}}\Rightarrow2x-1=a+b\Rightarrow1-2x=-\left(a+b\right)\)

\(\left(x-2\right)^3+\left(x+1\right)^3+\left(1-2x\right)^3=0\)

\(\Rightarrow a^3+b^3-\left(a+b\right)^3=0\)

\(\Rightarrow a^3+b^3-a^3-b^3-3ab\left(a+b\right)=0\)

\(\Rightarrow-3ab\left(a+b\right)=0\)

Từ đó a = 0 hoặc b = 0 hoặc a + b = 0

Hay x - 2 = 0 hoặc x + 1 = 0 hoặc 1 - 2x = 0

Vậy \(x\in\left\{2;-1;\frac{1}{2}\right\}\)

22 tháng 4 2017

a) 1x13x2x31=2xx2+x+11x−1−3x2x3−1=2xx2+x+1

Ta có: x31=(x1)(x2+x+1)x3−1=(x−1)(x2+x+1)

=(x1)[(x+12)2+34]=(x−1)[(x+12)2+34] cho nên x3 – 1 ≠ 0 khi x – 1 ≠ 0⇔ x ≠ 1

Vậy ĐKXĐ: x ≠ 1

Khử mẫu ta được:

x2+x+13x2=2x(x1)2x2+x+1=2x22xx2+x+1−3x2=2x(x−1)⇔−2x2+x+1=2x2−2x

4x23x1=0⇔4x2−3x−1=0

4x(x1

17 tháng 7 2016

a)\(\frac{1}{x-1}\)-\(\frac{3x2}{x3-1}\)=\(\frac{2x}{x2+x+1}\)

<=> \(\frac{1}{x-1}\)-\(\frac{3x2}{\left(x-1\right)\left(x2+x+1\right)}\)=\(\frac{2x}{x2+x+1}\) ĐKXĐ: x khác 1

<=> x2+x+1 - 3x2 = 2x(x-1)

<=>x2+x+1 - 3x2 = 2x2-2x

<=>x2-3x-1=0( đoạn này làm nhanh nhé)

<=>x2-2*\(\frac{3}{2}\)x +\(\frac{9}{4}\)-\(\frac{9}{4}\)-1=0

<=>(x-\(\frac{3}{2}\))2-\(\frac{13}{4}\)=0

<=>(x-\(\frac{3-\sqrt{13}}{2}\))(x-\(\frac{3+\sqrt{13}}{2}\))=0

\(\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}\)

17 tháng 7 2016

b) pt... đkxđ x khác 1;2;3

<=>  3(x-3) +2(x-2)=x-1

<=>  3x-9 +2x-4 = x-1

<=> 4x= 12

<=>  x=3 ( ko thỏa đk)

vậy pt vô nghiệm