Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải phương trình:\(\left(1+\sqrt{x^2+2020x}+2019\right)\left(\sqrt{x+2019}-\sqrt{x+1}\right)=2018\)
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
Đặt \(\hept{\begin{cases}\sqrt[3]{2-x}=a\\\sqrt[3]{x+7}=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2+b^2-ab=3\\a^3+b^3=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2-ab=3\\\left(a+b\right)\left(a^2-ab+b^2\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2-ab=3\\a+b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\)