K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0

=> hoặc (3x2 - 7x – 10) = 0 (1)

hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)

Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0

nên

x1 = - 1, x2 = =

Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0

nên

x3 = 1, x4 =

b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0

=> hoặc x + 3 = 0

hoặc x2 - 2 = 0

Giải ra x1 = -3, x2 = -√2, x3 = √2

c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0

=> hoặc 0,6x + 1 = 0 (1)

hoặc x2 – x – 1 = 0 (2)

(1) ⇔ 0,6x + 1 = 0

⇔ x2 = =

(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5

x3 = , x4 =

Vậy phương trình có ba nghiệm:

x1 = , x2 = , x3 = ,

d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0

⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0

⇔ (2x2 + x)(3x – 10) = 0

⇔ x(2x + 1)(3x – 10) = 0

Hoặc x = 0, x = , x =

Vậy phương trình có 3 nghiệm:

x1 = 0, x2 = , x3 =



12 tháng 5 2019

Ta có \(\left(x+2\right)\left(y+3\right)+\left(x+4\right)\left(y+1\right)=2xy+4x+6y+10=30\)

Đặt \(x+2=a,y+1=b\)

Ta có hệ mới

\(\hept{\begin{cases}\frac{1}{a\left(a+2\right)}+\frac{1}{b\left(b+2\right)}=\frac{2}{15}\left(1\right)\\a\left(b+2\right)+b\left(a+2\right)=30\left(2\right)\end{cases}}\)

Lấy (1).(2)

=>\(\frac{a}{b}+\frac{b}{a}+\frac{a+2}{b+2}+\frac{b+2}{a+2}=4\)

Nếu a,b khác dấu 

=> \(VT\le-4\)(loại)

Nếu a,b cùng dấu 

=> \(VT\ge4\)

Dấu bằng xảy ra khi a=b=3 hoặc a=b=-5

=> x=1,y=2 hoặc x=-7,y=-6 (thỏa mãn điều kiện xác định)

Vậy x=1,y=2 hoặc x=-7,y=-6

19 tháng 5 2019

bn nào giải thick cho mk đoạn cùng dấu và trái dấu với 

tại sao cùng dấu lại >=4

trái dấu lại<=4

và làm thế nào để tính a,b

8 tháng 3 2017

1/ nhân 4 cả 2 vế lên, vế trái sẽ trở thành (2x+1)(2x+2)^2(2x+3), nhân 2x+1 với 2x+3, cái bình phương phân tích ra
thành (4x^2+8x+3)(4x^2+8x+4)=72
đặt 4x^2+8x+4=a \(\left(a\ge0\right)\)

thay vào ta có (a-1)a=72 rồi bạn phân tích thành nhân tử sẽ có nghiệm là 9 và -8 loại được -8 thì nghiệm của a là 9
suy ra 2x+1=3 hoặc -3, tính ra được x rồi nhân vào với nhau

2/\(\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left[\left(x+1\right)+\left(x^2-x+1\right)\right]\)

đặt căn x+1=a, căn x^2-x+1=b (a,b>=0)
thay vào ra là \(2a^2-5ab+2b^2=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

suy ra a=2b hoặc b=2a, thay cái kia vào bình phương lên giải nốt phương trình rồi nhân nghiệm với nhau

10 tháng 3 2017

Nghiệm nguyên.

2x+3=(2x+1)+2

\(\left(1\right)\Leftrightarrow\left[\left(2x+1\right)\left(x+1\right)\right]^2+2\left(2x+1\right)\left(x+1\right)^2=18\\ \)

2x+1 luôn lẻ---> x+1 phải chẵn --> x phải lẻ---> x=2n-1

\(\left(4n+3\right)\left(2n\right)^2\left(4n+1\right)=18\)

18 không chia hết co 4 vậy vô nghiệm nguyên.

Viết diễn dải dài suy luận logic rất nhanh

18 tháng 10 2018

bn tự tìm ĐKXĐ nhé

Ta có:

\(3\left(x^2+2x+2\right)=10\sqrt{x^3+2x^2+2x+1}\)

\(\Leftrightarrow3\left(x^2+x+1\right)+2\left(x+1\right)=10\sqrt{\left(x+1\right)\left(x^2+x+1\right)}\)

Do \(x^2+x+1>0\forall x\)nên ta chia 2 vế của pt trên cho x^2+x+1, ta được:

\(3+3.\frac{x+1}{x^2+x+1}=10\sqrt{\frac{x+1}{x^2+x+1}}\)

Đặt \(\sqrt{\frac{x+1}{x^2+x+1}}=t\left(t\ge0\right)\)

Khi đó:

\(3t^2-10t+3=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=\frac{1}{3}\end{cases}}\)

Đến đây bạn tự giải nhé, dễ thôi mà

18 tháng 10 2018

chỗ 2(x+1) phải sửa lại thành 3(x+1) chứ

17 tháng 10 2015

\(\Leftrightarrow2x^2+3x-2-2\le2x^2+2x-3\Leftrightarrow x+1\le0\Leftrightarrow x\le1\)

5 tháng 6 2018

x^8 + 2x^6 + 2x^4 + x^2 + 1 - 4x^6 = 12( x^4 - 2x^2 - 1 ) - 4

x^8 + 2x^4 + x^2 + 1 - 2x^6 = 12x^4 - 24x^2 - 12 - 4

x^8 - 2x^6 = 12x^4 - 2x^4 - 24x^2 - x^2 - 16 - 1

x^8 - 2x^6 = 10x^4 - 25x^2 - 17

( x^2 )^4 - 2( x^2 )^3 = 10(x^2)^2 - 25x^2 - 17

0 = 10(x^2)^2 - ( x^2)^4 - 25x^2 + 2(x^2)^3 - 17

17 = (x^2)[ 10x^2 - (x^2)^3 - 25 + 2(x^2)^2 ]

17 = ( x^2 )[ 10x^2 - x^6 - 25 + 2x^4 ]

Botay.com.vn

6 tháng 6 2018

Giải phương trình mà NEVER_NNL