K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

đặt \(a=2x^2-x+1\)
\(\Rightarrow\frac{1}{a}+\frac{3}{a+2}=\frac{10}{a+6}\)
Đến đây đơn giản r

19 tháng 8 2017

Xét x=0 ko là nghiệm của pt

Xét x\(\ne\)0, chia cả tử và mẫu của 2 phân thức cho x ta đc:

\(\frac{4}{x-8-\frac{7}{x}}+\frac{5}{x-10+\frac{7}{x}}=-1\)

đặt \(x-\frac{7}{x}=t\), pt trở thành \(\frac{4}{t-8}+\frac{5}{t-10}=-1\)

đén đây dễ dàng tìm t rồi tìm x

12 tháng 5 2018

xét x = 0 là ngiệm của pt

xét \(x\ne0\),chia cả tử và mẫu của 2 phân thức cho x ta có:

\(\frac{4}{x-8-\frac{7}{x}}+\frac{5}{x-10+\frac{7}{x}}=-1\)

ta đặt: \(x-\frac{7}{x}=t\), pt trở thành \(\frac{4}{t-8}+\frac{5}{t-10}=-1\)

\(\Rightarrow\frac{4}{t}-\frac{4}{8}+\frac{5}{t}-\frac{5}{10}=-1\)

\(\Rightarrow\frac{4}{t}+\frac{5}{t}-\frac{1}{2}-\frac{1}{2}=-1\)

\(\Rightarrow\frac{9}{t}-1=-1\)

\(\Rightarrow\frac{9}{t}=-1+1=0\)

\(\Rightarrow9:t=0\)

vậy t không thỏa mãn

23 tháng 6 2019

ĐKXĐ: \(x>5\)

\(A=2x-1-\sqrt{\frac{\left(x-5\right)^2}{x-5}}=2x-1-\sqrt{x-5}\)

9 tháng 8 2017

PP chung ở cả 3 câu,nói ngắn gọn nhé:

Chứng mình x khác 0,hay nói cách khác x=0 không là nghiệm của phương trình.

Chia cả tử và mẫu cho x ,rồi giải bình thường bằng cách đặt ẩn phụ.

Vd ở câu a>>>4/(4x-8+7/x)+3/(4x-10+7/x)=1.Sau đó đặt 4x+7/x=a>>>4/(a-8)+3/(a-10)=1>>>giải bình thường,các câu sau tương tự

24 tháng 12 2017

tiếp tục câu 2,vì máy bị lỗi nên phải tách ra:

Ta có:\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right).\)

Dó đó:\(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+yz+xz\right)+2010\right)\)

\(=\left(x+y+z\right)^3.\)(2)

TỪ \(\left(1\right),\left(2\right)\)suy ra \(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}.\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{\sqrt{2010}}{3}\)

24 tháng 12 2017

2)Ta có:

\(x\left(x^2-yz+2010\right)=x\left(x^2+xy+xz+1340\right)>0\)

Tương tự ta có:\(y\left(y^2-xz+2010\right)>0,z\left(z^2-xy+2010\right)>0\)

Áp dụng svac-xơ ta có:

\(P=\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}.\)(1)