Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(sinx=-\frac{\sqrt{3}}{2}=sin\left(-\frac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)
b/ \(cosx=\frac{\sqrt{3}}{2}=cos\left(\frac{\pi}{6}\right)\Rightarrow x=\pm\frac{\pi}{6}+k2\pi\)
c/ \(cosx=\frac{\sqrt{2}}{2}=cos\left(\frac{\pi}{4}\right)\Rightarrow x=\pm\frac{\pi}{4}+k2\pi\)
d/ \(tanx=-\sqrt{3}=tan\left(-\frac{\pi}{3}\right)\Rightarrow x=-\frac{\pi}{3}+k\pi\)
1.
\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)
Xét (1):
Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm
c/
\(\Leftrightarrow\sqrt{3}tan\left(\frac{\pi}{9}-2x\right)=-3\)
\(\Leftrightarrow tan\left(\frac{\pi}{9}-2x\right)=-\sqrt{3}\)
\(\Rightarrow\frac{\pi}{9}-2x=-\frac{\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{2\pi}{9}+\frac{k\pi}{2}\)
d/
\(\Leftrightarrow\left[{}\begin{matrix}tanx=5\\tan2x=tan4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\2x=4+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\x=2+\frac{k\pi}{2}\end{matrix}\right.\)
a/
ĐKXĐ: ...
\(\Leftrightarrow tanx-8\sqrt{3}=3tanx-6\sqrt{3}\)
\(\Leftrightarrow2tanx=-2\sqrt{3}\)
\(\Rightarrow tanx=-\sqrt{3}\Rightarrow x=-\frac{\pi}{3}+k\pi\)
b/
\(\Leftrightarrow tan2x=-cot\left(\frac{5\pi}{8}\right)\)
\(\Leftrightarrow tan2x=tan\left(\frac{\pi}{2}+\frac{5\pi}{8}\right)\)
\(\Leftrightarrow tan2x=tan\left(\frac{9\pi}{8}\right)\)
\(\Rightarrow2x=\frac{9\pi}{8}+k\pi\Rightarrow x=\frac{9\pi}{16}+\frac{k\pi}{2}\)
Lê Huy Hoàng:
a) ĐK: $x\in\mathbb{R}\setminus \left\{k\pi\right\}$ với $k$ nguyên
PT $\Leftrightarrow \tan ^2x-4\tan x+5=0$
$\Leftrightarrow (\tan x-2)^2+1=0$
$\Leftrightarrow (\tan x-2)^2=-1< 0$ (vô lý)
Do đó pt vô nghiệm.
c)
ĐK:.............
PT $\Leftrightarrow 1+\frac{\sin ^2x}{\cos ^2x}-1+\tan x-\sqrt{3}(\tan x+1)=0$
$\Leftrightarrow \tan ^2x+\tan x-\sqrt{3}(\tan x+1)=0$
$\Leftrightarrow \tan ^2x+(1-\sqrt{3})\tan x-\sqrt{3}=0$
$\Rightarrow \tan x=\sqrt{3}$ hoặc $\tan x=-1$
$\Rightarrow x=\pi (k-\frac{1}{4})$ hoặc $x=\pi (k+\frac{1}{3})$ với $k$ nguyên
d)
ĐK:.......
PT $\Leftrightarrow \tan x-\frac{2}{\tan x}+1=0$
$\Leftrightarrow \tan ^2x+\tan x-2=0$
$\Leftrightarrow (\tan x-1)(\tan x+2)=0$
$\Rightarrow \tan x=1$ hoặc $\tan x=-2$
$\Rightarrow x=k\pi +\frac{\pi}{4}$ hoặc $x=k\pi +\tan ^{-2}(-2)$ với $k$ nguyên.
c/
ĐKXĐ: ...
\(\Leftrightarrow tan2x-2=3\left(2tan2x+1\right)\)
\(\Leftrightarrow5tan2x=-5\)
\(\Rightarrow tan2x=-1\)
\(\Rightarrow2x=-\frac{\pi}{4}+k\pi\)
\(\Rightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)
d/
ĐKXĐ: ...
\(\Leftrightarrow sinx+\sqrt{3}cosx=3sinx-\sqrt{3}cosx\)
\(\Leftrightarrow2sinx=2\sqrt{3}cosx\)
\(\Rightarrow tanx=\sqrt{3}\Rightarrow x=\frac{\pi}{3}+k\pi\)
a/
\(\Leftrightarrow tanx=-tan\left(\frac{2\pi}{3}-3x\right)\)
\(\Leftrightarrow tanx=tan\left(3x-\frac{2\pi}{3}\right)\)
\(\Rightarrow x=3x-\frac{2\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{\pi}{3}+\frac{k\pi}{2}\)
b/
\(tan\left(2x-15^0\right)=tanx\)
\(\Rightarrow2x-15^0=x+k180^0\)
\(\Rightarrow x=15^0+k180^0\)
=> x = \(\frac{\pi}{3}\)+kπ