K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Giải rồi mà

20 tháng 2 2020

\(a.\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=\)\(0\)

\(\Leftrightarrow\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2.\left(x+1\right).\left(x-3\right)}=0\)

\(\Leftrightarrow2x^2-6=0\)

\(\Leftrightarrow2x^2=6\)

\(\Leftrightarrow x^2=3\)

\(\Leftrightarrow x=\sqrt{3}\)

\(b.2x^3-5x^2+3x=0\)

\(\Leftrightarrow x.\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x.\left(2x^2-2x-3x+3\right)=0\)

\(\Leftrightarrow x.\left[2x.\left(x-1\right)-3.\left(x-1\right)\right]=0\)

\(\Leftrightarrow x.\left(x-1\right).\left(2x-3\right)=0\)

Đến đây tự làm nhé có việc bận

20 tháng 2 2020

câu a sai dzoii

31 tháng 1 2017

để ý 1+1/x(x+2)=(x2+2x+1)/x(x+2)=(x+1)2/x(x+2)

+ 1+1/1.3=22/1.3 ;...... 

21 tháng 3 2019

\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)

\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)

\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)

\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)

\(ĐK:x\ge2016;y\ge2017;z\ge2018\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)

21 tháng 3 2019

nhân đôi 2 vế rồi chuyển vế trái sang vế phải, ta có:

\(\left(\sqrt{x-2016}-1\right)^2\) + \(\left(\sqrt{y-2017}-1\right)^2\)

\(\left(\sqrt{z-2018}-1\right)^2\)

= 0

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

5 tháng 3 2017

\(giải:\)

\(1,\)\(\frac{x}{5}+\frac{2x+1}{3}=\frac{x-5}{15}\)

\(\Leftrightarrow\frac{x}{5}+\frac{2x+1}{3}-\frac{x-15}{15}=0\)

\(\Leftrightarrow\frac{3x}{15}+\frac{5\left(2x+1\right)}{15}-\frac{x-15}{15}=0\)

\(\Leftrightarrow\frac{3x+5\left(2x+1\right)-\left(x-15\right)}{15}=0\)

\(\Leftrightarrow\frac{3x+10x+5-x+15}{15}=0\)

\(\Leftrightarrow\frac{12x+20}{15}=0\)

\(\Rightarrow12x+20=0\)

\(\Leftrightarrow12x=-20\Leftrightarrow x=\frac{-5}{3}\)

vậy tập nghiệm của phương trình là \(s=\left[\frac{-5}{3}\right]\)

\(2,\)\(\left(x^3-64\right)+6x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-4^3\right)+6x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16\right)+6x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16+6x\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+10x+16\right)=0\)

 \(mà\)\(x^2+10x+16>0\)

\(\Rightarrow x-4=0\Rightarrow x=4\)

vậy x=4 là nghiệm của phương trình

\(3,\)\(\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{x^2-4}\)

\(\Leftrightarrow\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=16\)\

\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-16=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-16=0\)

\(\Leftrightarrow8x-16=0\)

\(\Leftrightarrow8\left(x-2\right)=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

vậy x=2 là nghiệm của phương trình