Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=\)\(0\)
\(\Leftrightarrow\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2.\left(x+1\right).\left(x-3\right)}=0\)
\(\Leftrightarrow2x^2-6=0\)
\(\Leftrightarrow2x^2=6\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\sqrt{3}\)
\(b.2x^3-5x^2+3x=0\)
\(\Leftrightarrow x.\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x.\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x.\left[2x.\left(x-1\right)-3.\left(x-1\right)\right]=0\)
\(\Leftrightarrow x.\left(x-1\right).\left(2x-3\right)=0\)
Đến đây tự làm nhé có việc bận
để ý 1+1/x(x+2)=(x2+2x+1)/x(x+2)=(x+1)2/x(x+2)
+ 1+1/1.3=22/1.3 ;......
\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)
\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)
\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)
\(ĐK:x\ge2016;y\ge2017;z\ge2018\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)
\(giải:\)
\(1,\)\(\frac{x}{5}+\frac{2x+1}{3}=\frac{x-5}{15}\)
\(\Leftrightarrow\frac{x}{5}+\frac{2x+1}{3}-\frac{x-15}{15}=0\)
\(\Leftrightarrow\frac{3x}{15}+\frac{5\left(2x+1\right)}{15}-\frac{x-15}{15}=0\)
\(\Leftrightarrow\frac{3x+5\left(2x+1\right)-\left(x-15\right)}{15}=0\)
\(\Leftrightarrow\frac{3x+10x+5-x+15}{15}=0\)
\(\Leftrightarrow\frac{12x+20}{15}=0\)
\(\Rightarrow12x+20=0\)
\(\Leftrightarrow12x=-20\Leftrightarrow x=\frac{-5}{3}\)
vậy tập nghiệm của phương trình là \(s=\left[\frac{-5}{3}\right]\)
\(2,\)\(\left(x^3-64\right)+6x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-4^3\right)+6x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16\right)+6x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16+6x\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+10x+16\right)=0\)
\(mà\)\(x^2+10x+16>0\)
\(\Rightarrow x-4=0\Rightarrow x=4\)
vậy x=4 là nghiệm của phương trình
\(3,\)\(\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{x^2-4}\)
\(\Leftrightarrow\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=16\)\
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-16=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-16=0\)
\(\Leftrightarrow8x-16=0\)
\(\Leftrightarrow8\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
vậy x=2 là nghiệm của phương trình