K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

\(\Rightarrow\frac{2}{x^2+x+3x+3}+\frac{5}{x^2+3x+8x+24}+\frac{2}{x^2+10x+8x+80}=\frac{9}{52}\)

\(\Rightarrow\frac{2}{x\left(x+1\right)+3\left(x+1\right)}+\frac{5}{x\left(x+3\right)+8\left(x+3\right)}+\frac{2}{x\left(x+10\right)+8\left(x+10\right)}=\frac{9}{52}\)

\(\Rightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{5}{\left(x+3\right)\left(x+8\right)}+\frac{2}{\left(x+8\right)\left(x+10\right)}=\frac{9}{52}\)

\(\Rightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+10}=\frac{9}{52}\)

\(\Rightarrow\frac{1}{x+1}-\frac{1}{x+10}=\frac{9}{52}\Rightarrow\frac{x+10-x-1}{\left(x+1\right)\left(x+10\right)}=\frac{9}{52}\Rightarrow\frac{9}{x^2+11x+10}=\frac{9}{52}\)

\(\Rightarrow x^2+11x+10=52\Rightarrow x^2+2\cdot\frac{11}{2}x+\frac{121}{4}-\frac{81}{4}=52\)

\(\Rightarrow\left(x+\frac{11}{2}\right)^2=\frac{289}{4}\Rightarrow x+\frac{11}{2}=\frac{17}{2}\Rightarrow x=\frac{17}{2}-\frac{11}{2}=\frac{6}{2}=3\Rightarrow x=3\)

25 tháng 6 2018

\(\frac{2}{x^2+4x+3}+\frac{5}{x^2+11x+24}+\frac{2}{x^2+18x+80}=\frac{9}{52}\)(ĐKXĐ: x khác -1;-3;-8;-10)

\(\Leftrightarrow\frac{2}{x^2+x+3x+3}+\frac{5}{x^2+3x+8x+24}+\frac{2}{x^2+8x+10x+80}=\frac{9}{52}\)

\(\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{5}{\left(x+3\right)\left(x+8\right)}+\frac{2}{\left(x+8\right)\left(x+10\right)}=\frac{9}{52}\)

\(\Leftrightarrow\frac{2\left(x+8\right)\left(x+10\right)+5\left(x+1\right)\left(x+10\right)+2\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=\frac{9}{52}\)

\(\Leftrightarrow\frac{9x^2+99x+216}{x^4+22x^3+155x^2+374x+240}=\frac{9}{52}\)

\(\Rightarrow468x^2+5148x+11232=9x^4+198x^3+1395x^2+3366x+2160\)

\(\Leftrightarrow9x^4+198x^3+927x^2-1782x-9072=0\)

\(\Leftrightarrow x^4+22x^3+103x^2-198x-1008=0\)

\(\Leftrightarrow x^4-3x^3+25x^3-75x^2+178x^2-534x+336x-1008=0\)

\(\Leftrightarrow x^3\left(x-3\right)+25x^2\left(x-3\right)+178x\left(x-3\right)+336\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3+25x^2+178x+336\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2+22x^2+66x+112x+336\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[x^2\left(x+3\right)+22x\left(x+3\right)+112\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+22x+112\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+8x+14x+112\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3\right)\left[x\left(x+8\right)+14\left(x+8\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3\right)\left(x+8\right)\left(x+14\right)=0\)

\(\Leftrightarrow\frac{\orbr{\begin{cases}x+3=0\\x-3=0\end{cases}}}{\orbr{\begin{cases}x+8=0\\x+14=0\end{cases}}}\Leftrightarrow\frac{\orbr{\begin{cases}x=-3\left(\times\right)\\x=3\end{cases}}}{\orbr{\begin{cases}x=-8\left(\times\right)\\x=-14\end{cases}}}\)(Vì x=-3 và x=-8 không t/m ĐKXĐ)

Vậy tập nghiệm của pt là \(S=\left\{3;-14\right\}.\)

23 tháng 5 2017

\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)

Điều kiện: \(x\ge\frac{1}{3}\)

Đặt \(\sqrt{x-\frac{1}{3}}=a\left(a\ge0\right)\)

\(\Rightarrow x=a^2+\frac{1}{3}\)

Ta suy ra phương trình tương đương với

\(18\left(a^2+\frac{1}{3}\right)^2-2\left(a^2+\frac{1}{3}\right)-\frac{17}{3}+9a=0\)

\(\Leftrightarrow54a^4+30a^2+27a-13=0\)

\(\Leftrightarrow\left(3a-1\right)\left(18a^3+6a^2+12a+13\right)=0\)

Dễ thấy \(18a^3+6a^2+12a+13>0\) vì \(a\ge0\)

\(\Rightarrow3a-1=0\)

\(\Leftrightarrow a=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{x-\frac{1}{3}}=\frac{1}{3}\)

\(\Leftrightarrow x-\frac{1}{3}=\frac{1}{9}\)

\(\Leftrightarrow x=\frac{4}{9}\)

29 tháng 7 2017

gõ lại đề 

7 tháng 8 2018

\(\dfrac{2}{x^2+4x+3}+\dfrac{5}{x^2+11x+24}+\dfrac{2}{x^2+18x+80}=\dfrac{9}{52}\\ ĐKXĐ:x\ne-1;x\ne-3;x\ne-8;x\ne-10\\ \Leftrightarrow\dfrac{2}{\left(x+1\right)\left(x+3\right)}+\dfrac{5}{\left(x+3\right)\left(x+8\right)}+\dfrac{2}{\left(x+8\right)\left(x+10\right)}=\dfrac{9}{52}\\ \Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+8}+\dfrac{1}{x+8}-\dfrac{1}{x+10}=\dfrac{9}{52}\\ \Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+10}=\dfrac{9}{52}\\ \Leftrightarrow\dfrac{52\left(x+10\right)}{52\left(x+1\right)\left(x+10\right)}-\dfrac{52\left(x+1\right)}{52\left(x+1\right)\left(x+10\right)}=\dfrac{9\left(x+1\right)\left(x+10\right)}{52\left(x+1\right)\left(x+10\right)}\\ \Leftrightarrow52\left(x+10\right)-52\left(x+1\right)=9\left(x+1\right)\left(x+10\right)\\ \Leftrightarrow9\left(x^2+10x+x+10\right)=52\left(x+10-x-1\right)\\ \Leftrightarrow9\left(x^2+11x+10\right)=52\cdot9\\ \Leftrightarrow x^2+11x+10=52\\ \Leftrightarrow x^2+14x-3x-42=0\\ \Leftrightarrow x\left(x+14\right)-3\left(x+14\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+14\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+14=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-14\end{matrix}\right.\left(T/m\right)\)

Vậy.............

25 tháng 12 2018

\(\hept{\begin{cases}2.\frac{1}{x}+5.\frac{1}{x+y}=2\\3.\frac{1}{x}+\frac{1}{x+y}=1,7\end{cases}}\)

Đặt \(\frac{1}{x}\)=a 

\(\frac{1}{x+y}=b\)

ta có \(\hept{\begin{cases}2a+5b=2\\3a+b=1,7\end{cases}}\)

\(\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{5}\end{cases}}\)

=> \(\frac{1}{x}=\frac{1}{2}\Rightarrow x=2\)

\(\frac{1}{x+y}=\frac{1}{5}\)\(\Rightarrow x+y=5\)\(\Rightarrow y=3\)

18 tháng 4 2018

\(\frac{12}{x-1}-\frac{8}{x+1}=1\left(ĐKXĐ:x\ne\pm1\right)\)

\(\Leftrightarrow\frac{12\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{8\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\) \(\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow\left(12x+12\right)-\left(8x-8\right)=x^2-1\)

\(\Leftrightarrow12x+12-8x+8=x^2-1\)

\(\Leftrightarrow12x+12-8x+8-x^2+1=0\)

\(\Leftrightarrow-x^2+4x+21=0\)

\(\Leftrightarrow x^2-4x-21=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)-25=0\)

\(\Leftrightarrow\left(x-2\right)^2-5^2=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}\)

Vậy phương trình có tập nghiệm  \(S=\left\{7;-3\right\}\)

18 tháng 4 2018

a thiếu

chỗ x phải có chữ thỏa mãn nữa nha

sorry sora cưng