Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)
\(\Leftrightarrow-3sin^22x+sin2x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
5.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)
\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)
\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)
\(\Leftrightarrow sin^22x=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)
\(a,sin2x-2sinx+cosx-1=0\)
\(\Leftrightarrow2sinxcosx-2sinx+cosx-1=0\)
\(\Leftrightarrow2sinx\left(cosx-1\right)+cosx-1=0\)
\(\Leftrightarrow\left(cosx-1\right)\left(2sinx+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=1\\sinx=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2k\pi\\x=\frac{-\pi}{6}+2k\pi\end{cases}}}\)
\(b,\sqrt{2}\left(sinx-2cosx\right)=2-sin2x\)
\(\Leftrightarrow\sqrt{2}sinx-2\sqrt{2}cosx-2+2sinxcosx=0\)
\(\Leftrightarrow\sqrt{2}sinx\left(1+\sqrt{2}cosx\right)-2.\left(\sqrt{2}cosx+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{2}cosx+1\right)\left(\sqrt{2}sinx-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{-\sqrt{2}}{2}\\sinx=\frac{2\sqrt{2}}{2}\left(l\right)\end{cases}}\)(vì \(-1\le sinx\le1\))
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3\pi}{4}+2k\pi\\x=\frac{5\pi}{4}+2k\pi\end{cases}}\)
\(c,\frac{1}{cosx}-\frac{1}{sinx}=2\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
\(\Leftrightarrow\frac{sinx-cosx}{sinx.cosx}=2\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
\(\Leftrightarrow\frac{-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)}{sinx.cosx}=2\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
\(\Leftrightarrow sin2x+1=0\)
\(\Leftrightarrow sin2x=-1\)
\(\Leftrightarrow2x=\frac{3\pi}{2}+2k\pi\)
\(\Leftrightarrow x=\frac{3\pi}{4}+k\pi\)
a)\(\Leftrightarrow1+\sin x-\sqrt{1-\sin^2x}=0\)
\(\Leftrightarrow1+\sin^2x+2\sin x=1-\sin^2x\)
\(\Leftrightarrow\sin^2x+\sin x=0\)
\(\Rightarrow\left[{}\begin{matrix}\sin x=0\\\sin x=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=k.\pi\left(k\in Z\right)\\x=-\frac{\pi}{2}+k.2\pi\left(k\in Z\right)\end{matrix}\right.\)
Vậy...
b)\(\Leftrightarrow\cos^2x-\sin^2x=1\)
\(\Leftrightarrow\cos^2x-\left(1-\cos^2x\right)=1\)
\(\Leftrightarrow\cos^2x=1\)
\(\Rightarrow\left[{}\begin{matrix}x=k.2\pi\\x=\pi+k.2\pi\end{matrix}\right.\)
Vậy ....
#Walker
Ta có: \(\frac{1-\sin x}{\cos x}=0\)
ĐK: \(\cos x\ne0\Rightarrow x\ne90\)
\(Pt\Leftrightarrow1-\sin x=0\cdot\cos x\)
\(\Leftrightarrow1-\sin x=0\)
\(\Leftrightarrow\sin x=1\)
\(\Leftrightarrow\sin x=\sin90\)
\(\Rightarrow x=90\)
Mà theo đk thì: \(x\ne90\)
=> PT vô nghiệm
\(\Leftrightarrow\left(1-\sin x\right):\frac{1}{\cos x}=0\)
\(\Rightarrow\left(1-\sin x\right).\cos x=0\)
\(\Leftrightarrow\left(1-\sin x\right).\frac{1}{\sin x}=0\)
\(\Leftrightarrow\frac{1}{\sin x}-1=0\)
\(\Leftrightarrow\frac{1}{\sin x}=1\)
\(\Leftrightarrow\sin x=1\)
\(\Leftrightarrow x=90\)