K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2020

\(\Leftrightarrow3\left(2x^2+5x+1\right)+\sqrt{2x^2+5x+1}-4=0\)

\(\Leftrightarrow3\left(2x^2+5x+1\right)-3\sqrt{2x^2+5x+1}+4\sqrt{2x^2+5x+1}-4=0\)

\(\Leftrightarrow3\sqrt{2x^2+5x+1}\left(\sqrt{2x^2+5x+1}-1\right)+4\left(\sqrt{2x^2+5x+1}-1\right)=0\)

\(\Leftrightarrow\left(3\sqrt{2x^2+5x+1}+4\right)\left(\sqrt{2x^2+5x+1}-1\right)=0\)

\(\Leftrightarrow\sqrt{2x^2+5x+1}-1=0\)

\(\Leftrightarrow2x^2+5x=0\Leftrightarrow x\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{5}{2}\end{cases}}\)(thỏa mãn ĐKXĐ)

Tập nghiệm: \(S=\left\{0;-\frac{5}{2}\right\}\)

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

4 tháng 4 2020

\(ĐK:x\ge\frac{1}{2}\)

Biến đổi phương trình đã cho thành

\(\left(x-2\right)\left[3x\left(\sqrt{2x-1}+1\right)-\left(2x^2-x+2\right)\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\3x\left(\sqrt{2x-1}+1\right)-\left(2x^2-x+2\right)=0\left(1\right)\end{cases}}\)

Giải PT 

\(\left(1\right)\Leftrightarrow3x\left(\sqrt{2x-1}+1\right)-x\left(2x-1\right)-2=0\left(2\right)\)

đặt \(\sqrt{2x-1}=t\left(zới\right)t\ge0=>x=\frac{t^2+1}{t}\)thay zô PT (2) ta đc

\(t^4-3t^3-2t^2-3t+1=0\Leftrightarrow\left(t^2+t+1\right)\left(t^2-4t+1\right)=0\Leftrightarrow t^2-4t+1=0\Leftrightarrow t=2\pm\sqrt{3}\)

từ đó tìm đc 

\(x=4\pm2\sqrt{3}\left(tm\right)\)

4 tháng 4 2020

Kết luận . PT có 3 nghiệm là

\(x=2;x=4\pm2\sqrt{3}\)

6 tháng 4 2020

Ta có : 6.x2 + 15.x + \(\sqrt{2.x^2+5.x+1}=1\)

<=> 3.( 2.x2 + 5.x + 1 ) + \(\sqrt{2.x^2+5.x+1}-4=0\)

Đặt \(\sqrt{2.x^2+5.x+1}=a\left(a>0\right)\)

=> 3.a2 + a -4 =0

<=> ( 3.a + 4 ) .( a - 1 ) = 0

=> a = 1 => 2.x2 + 5.x +  1 =1 

<=> \(\orbr{\begin{cases}x=0\\x=\frac{-5}{2}\end{cases}}\)

Vậy nghiệm cuối cùng là { 0 ; \(\frac{-5}{2}\)

4 tháng 3 2019

x=0 ; x=2/3 - cau b 

anh giai tu giai thu

5 tháng 3 2019

Giai giùm đi

10 tháng 9 2016

Nó có 1 nghiệm là 9

Bạn chứng minh nó là nghiệm duy nhất đi

11 tháng 9 2016

1 nghiệm ls 9