K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

Nếu \(x< -a\) thì ta có phương trình sau:

\(-2\left(x+a\right)+x\left(x-2a\right)=3a\\ \Leftrightarrow x=-7a\)

Nếu \(x\ge2a\) thì ta có phương trình sau:

\(2\left(x+a\right)-\left(x-2a\right)=3a\\ \Leftrightarrow x=-a\)

Nếu \(-a\le x\le2a\) thì ta có phương trình sau:

\(2\left(x+a\right)+\left(x-2a\right)=3a\\\Leftrightarrow x=a\)

9 tháng 4 2018

Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có : 

\(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi \(\left(x-3\right)\left(5-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-3\ge0\\5-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le5\end{cases}}}\)

\(\Rightarrow\)\(3\le x\le5\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-3\le0\\5-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge5\end{cases}}}\) ( loại ) 

Do đó : 

\(2a=2\) \(\Rightarrow\) \(a=\frac{2}{2}=1\)

Vậy \(a=1\)  khi \(3\le x\le5\)

Chúc bạn học tốt ~ 

16 tháng 3 2020

a) đặt \(t=x^2\)  (t\(\ge0\))

=>\(t^2-t-2=0\)=>\(\orbr{\begin{cases}t=2\\t=-1\left(loại\right)\end{cases}}\)

=>\(x^2=2\)=>\(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

16 tháng 3 2020

a) \(\orbr{\begin{cases}x=\sqrt{3}\\x=-\sqrt{3}\end{cases}}\)

b)\(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)

c)\(x=\frac{47}{6}\)