Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2x^4-5x^3-27x^2+25x+50=0\)
\(\Leftrightarrow2x^4+2x^3-10x^2-7x^3-7x^2+35x-10x^2-10x+50=0\)
\(\Leftrightarrow2x^2\left(x^2+x-5\right)-7x\left(x^2+x-5\right)-10\left(x^2+x-5\right)=0\)
\(\Leftrightarrow\left(x^2+x-5\right)\left(2x^2-7x-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x-5=0\\2x^2-7x-10=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1\pm\sqrt{21}}{2}\\x=\frac{7\pm\sqrt{129}}{4}\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{-1-\sqrt{21}}{2};\frac{7-\sqrt{129}}{4};\frac{-1+\sqrt{21}}{2};\frac{7+\sqrt{129}}{4}\right\}\)
a) \(x^3+x^2+x=-\frac{1}{3}\)
\(\Leftrightarrow3x^3+3x^2+3x=-1\)
\(\Leftrightarrow2x^3+\left(x^3+3x^2+3x+1\right)=0\)
\(\Leftrightarrow2x^3=-\left(x+1\right)^3\)
\(\Leftrightarrow x.\sqrt[3]{2}=-x-1\)
\(\Leftrightarrow x+x.\sqrt[3]{2}=-1\)
\(\Leftrightarrow x\left(1+\sqrt[3]{2}\right)=-1\)
\(\Leftrightarrow x=\frac{-1}{1+\sqrt[3]{2}}\)
b) \(x^3+2x^2+4x=-\frac{8}{3}\)
\(\Leftrightarrow3x^3+6x^2+12x=-8\)
\(\Leftrightarrow2x^3+\left(x^3+6x^2+12x+8\right)=0\)
\(\Leftrightarrow2x^3=-\left(x+2\right)^3\)
\(\Leftrightarrow x.\sqrt[3]{2}=-x-2\)
\(\Leftrightarrow x\left(1+\sqrt[3]{2}\right)=-2\)
\(\Leftrightarrow x=-\frac{2}{1+\sqrt[3]{2}}\)
\(a,|x+3|=3x-1\)
+) với:\(x\ge-3\Rightarrow x+3\ge0\Rightarrow|x+3|=x+3\)
\(\Rightarrow3x-1=x+3\Rightarrow3x=x+4\Rightarrow x=2\left(\text{ thỏa mãn}\right)\)
+) với: \(x< -3\Rightarrow x+3< 0\Rightarrow|x+3|=-3-x\)
\(\Rightarrow-3-x=3x-1\Rightarrow-x=3x+2\Rightarrow4x+2=0\Rightarrow x=-\frac{1}{2}\left(\text{loại}\right)\)
Vậy: x=2
#)Sửa đề : x4+2x3+5x2+4x-12=0
#)Giải :
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
a) \(\left(4x^2-25\right)\left(2x^2-7x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x^2-25=0\left(1\right)\\2x^2-7x-9=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2=\frac{25}{4}\Leftrightarrow x=\pm\frac{5}{2}\)
\(\left(2\right)\Leftrightarrow2x^2-9x+2x-9=0\)
\(\Leftrightarrow2x\left(x+1\right)-9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{9}{2}\end{matrix}\right.\)
Vậy....
b) \(\left(2x^2-3\right)^2-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2-3\right)^2-\left(2x-2\right)^2=0\)
\(\Leftrightarrow\left(2x^2-3-2x+2\right)\left(2x^2-3+2x-2\right)=0\)
\(\Leftrightarrow\left(2x^2-2x-1\right)\left(2x^2+2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x-1=0\left(3\right)\\2x^2+2x-5=0\left(4\right)\end{matrix}\right.\)
\(\left(3\right)\Delta=2^2-4\cdot2\cdot\left(-1\right)=12\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2-\sqrt{12}}{4}=\frac{1-\sqrt{3}}{2}\\x=\frac{2+\sqrt{12}}{4}=\frac{1+\sqrt{3}}{2}\end{matrix}\right.\)
\(\left(4\right)\Delta=2^2-4\cdot2\cdot\left(-5\right)=44\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2-\sqrt{44}}{4}=\frac{-1-\sqrt{11}}{2}\\x=\frac{-2+\sqrt{44}}{4}=\frac{-1+\sqrt{11}}{2}\end{matrix}\right.\)
Vậy...
c) \(x^3+5x^2+7x+3=0\)
\(\Leftrightarrow x^3+3x^2+2x^2+6x+x+3=0\)
\(\Leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
Vậy...
d) \(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow x^3-2x^2-4x^2+8x+3x-6=0\)
\(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=3\end{matrix}\right.\)
Vậy...
bài này mình biết nè
với x thỏa mãn đk thì ta có pt
<=> \(\sqrt[3]{25x^4\left(2x^2+9\right)}=4x^2+3< =>\sqrt[3]{5x^2.5x^2\left(2x^2+9\right)}=4x^2+3\)
Áp dụng bđt cố si ta có
\(\sqrt[3]{5x^2.5x^2\left(2x^2+9\right)}\le\frac{12x^2+9}{3}=4x^2+3\)
đến đây thì dễ rồi cậu tự tìm dấu = xảy ra nhé