\(x^2+9x-400=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

\(x^2+9x-400=0\)

\(\Leftrightarrow x^2-16x+25x-400=0\)

\(\Leftrightarrow x\left(x-16\right)+25\left(x-16\right)=0\)

\(\Leftrightarrow\left(x-16\right)\left(x+25\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=16\\x=-25\end{cases}}\)

\(a=1;b=9;c=-400\)

\(\Delta=b^2-4ac=9^2-4.1.\left(-400\right)=1681>0\)

Phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-9+\sqrt{1681}}{2.1}=16\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-9-\sqrt{1681}}{2.1}=-25\)

12 tháng 2 2020

\(x^4+9x^2=0\)

\(\Leftrightarrow x^2\left(x^2+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}\)

Vậy ........

12 tháng 2 2020

Ta có \(x^4\ge0\) và \(9x^2\ge0\) 

=> \(x^4+9x^4\ge0\)

=> dấu '=' xảy ra khi x=0

Vậy x=0

18 tháng 9 2015

a) Điều kiện xác định \(16x+8\ge0\Leftrightarrow x\ge-\frac{1}{2}.\)

Theo bất đẳng thức Cô-Si cho 4 số ta được 

\(4\sqrt[4]{16x+8}=4\sqrt[4]{2\cdot2\cdot2\cdot\left(2x+1\right)}\le2+2+2+2x+1=2x+7\)

Do vậy mà \(4x^3+4x^2-5x+9\le2x+7\Leftrightarrow\left(2x-1\right)^2\left(x+2\right)\le0\).

Vì \(x\ge-\frac{1}{2}\to x+2>0\to\left(2x-1\right)^2\le0\to x=\frac{1}{2}.\) 

b. Ta viết phương trình dưới dạng sau đây  \(9x^4-21x^3+27x^2+16x+16=0\Leftrightarrow3x^2\left(3x^2-7x+7\right)+4\left(x+2\right)^2=0\)

Vì \(3x^2-7x+7=\frac{36x^2-2\cdot6x\cdot7+49+35}{12}=\frac{\left(6x-7\right)^2+35}{12}>0\) nên vế trái dương, suy ra phương trinh vô nghiệm.

20 tháng 5 2019

nãy giải rồi

20 tháng 5 2019

\(\hept{\begin{cases}7x-3y=4\\4x+y=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}7x-3y=4\\12x+3y=15\end{cases}}\)

Cộng vế ta được :

\(7x-3y+12x+3y=4+15\)

\(\Leftrightarrow19x=19\)

\(\Leftrightarrow x=1\)

Khi đó : \(7-3y=4\Leftrightarrow y=1\)

Vậy \(x=y=1\)

20 tháng 5 2019

a) \(x^4-9x^2+20=0\)

\(\Leftrightarrow x^4-4x^2-5x^2+20=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)-5\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x^2-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\in\left\{\pm2\right\}\\x\in\left\{\pm\sqrt{5}\right\}\end{cases}}\)

Vậy....

20 tháng 5 2019

\(x^4-9x^2+20=0\)

\(\Leftrightarrow x^4-4x^2-5x^2+20=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)-5\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-5\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-5=0\\x^2-4=0\end{cases}}\Leftrightarrow x\in\left\{\pm2\right\}\)

3 tháng 5 2017

a. ĐKXĐ: \(x\ge-\frac{10}{3}\) 

Điều kiện có nghiệm : \(x^2+9x+20\ge0\Leftrightarrow\orbr{\begin{cases}x\ge-4\\x\le-5\end{cases}}\)

Kết hợp ta có điều kiện \(x\ge-\frac{10}{3}.\)

Từ phương trình ta có: \(x^2+9x+18=2\left(\sqrt{3x+10}-1\right)\)

\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=2.\frac{3x+9}{\sqrt{3x+10}+1}\)

\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=\frac{6\left(x+3\right)}{\sqrt{3x+10}+1}\)

\(\Leftrightarrow\left(x+3\right)\left(x+6-\frac{6}{\sqrt{3x+10}+1}\right)=0\)

TH1: x = - 3 (tm)

Th2: \(x+6-\frac{6}{\sqrt{3x+10}+1}=0\)

\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x+6-6=0\)

\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x=0\)

Đặt \(\sqrt{3x+10}=t\Rightarrow x=\frac{t^2-10}{3}\)

Vậy thì \(\left(\frac{t^2-10}{3}+6\right)t+\frac{t^2-10}{3}=0\)

\(\Leftrightarrow\frac{t^3+8t}{3}+\frac{t^2-10}{3}=0\Leftrightarrow t^3+t^2+8t-10=0\Leftrightarrow t=1\Leftrightarrow x=-3\left(tm\right).\)

Vậy pt có 1 nghiệm duy nhất x = - 3.

b. Nhân 2 vào hai vế của phương trình thứ nhất rồi trừ từng vế cho phương trình thứ hai, ta được:

\(2x^2y^2-4x+2y^2-\left(2x^2-4x+y^3+3\right)=0\)

\(\Leftrightarrow2x^2y^2-2x^2-y^3+2y^2-3=0\)

\(\Leftrightarrow2x^2\left(y^2-1\right)-\left(y+1\right)\left(y^2-3y+3\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(2x^2y-2x^2-y^2+3y-3\right)=0\)

Với y = - 1 ta có \(x^2-2x+1=0\Leftrightarrow x=1.\)

Với \(\left(2x^2+3\right)y-\left(2x^2+3\right)-y^2=0\Leftrightarrow\left(2x^2+3\right)\left(y-1\right)=y^2\)

\(\Rightarrow\frac{y^2}{y-1}-4x=-y^3\Rightarrow x=\frac{y^4-y^3+y^2}{4\left(y-1\right)}\)

Thế vào pt (1) : Vô nghiệm.

Vậy (x; y) = (1; -1)

9 tháng 5 2017

Thank you bạn nha

2 tháng 2 2017

\(\left(x-1\right)^3=x^3-3x^2+3x-1\)

\(\Leftrightarrow y^3+6y-2=0\)(*)

(*) có nghiệm \(y=\sqrt[3]{4}-\sqrt[3]{2}\) do mình nhớ có lần làm cái bài này

Tính Giá trị A= (a^3+6a-2)^2016 với \(a=\sqrt[3]{2}\left(\sqrt[3]{2}-1\right)\) 

KL:

\(x=\sqrt[3]{4}-\sqrt[3]{2}+1\)

2 tháng 2 2017

bạn giải chi tiết đoạn tìm no Y dc ko

12 tháng 9 2017

Anh/chị tham khảo ở đây nhé:

 (4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1 
<=> (4x - 1)²(x² + 1) = [ 2(x² + 1) + 2x - 1 ]² 
<=> (16x² - 8x + 1)(x² + 1) = 4(x² + 1)² + 4x² + 1 + 8x(x² + 1) - 4(x² + 1) - 4x 
<=> 16x^4 + 16x² - 8x^3 - 8x + x² + 1 = 4(x^4 + 2x² + 1) + 4x² + 1 + 8x^3 + 8x - 4x² - 4 - 4x 
<=> 16x^4 + 16x² - 8x^3 - 8x + x² + 1 = 4x^4 + 8x² + 4 + 4x² + 1 + 8x^3 + 8x - 4x² - 4 - 4x 
<=> 16x^4 - 8x^3 + 17x² - 8x + 1 = 4x^4 + 8x^3 + 8x² + 4x + 1 
<=> 12x^4 - 16x^3 + 9x² - 12x = 0 
<=> x(12x^3 - 16x² + 9x - 12) = 0 
<=> x(12x^3 + 9x - 16x² - 12) = 0 
<=> x[ 3x(4x² + 3) - 4(4x² + 3) = 0 
<=> x(3x - 4)(4x² + 3) = 0 

<=> x = 0 
<=> 3x - 4 = 0 
<=> 4x² + 3 = 0 

<=> x = 0 
<=> x = 4/3 
<=> x² = -3/4 --> Không có nghiệm vì x² ≥ 0 với mọi x 

Thế x = 0 vào (4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1 
<=> -1√1 = 2 - 1 
<=> -1 = 1 ( Vô lý loại ) 

Thế x = 4/3 vào (4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1 
<=> 13/3√25/9 = 2.25/9 + 2.4/3 - 1 
<=> 65/9 = 65/9 ( đúng ) 

Nghiệm là x = 4/3