Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-1009}{1001}+\dfrac{x-4}{1003}+\dfrac{x+2010}{1005}=7\)
\(\Leftrightarrow\dfrac{x-1009}{1001}+\dfrac{x-4}{1003}+\dfrac{x+2010}{1005}-7=0\)
\(\Leftrightarrow\left(\dfrac{x-1009}{1001}-1\right)+\left(\dfrac{x-4}{1003}-2\right)+\left(\dfrac{x+2010}{1005}-4\right)=0\)
\(\Leftrightarrow\dfrac{x-2010}{1001}+\dfrac{x-2010}{1003}+\dfrac{x-2010}{1005}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\dfrac{1}{1001}+\dfrac{1}{1003}+\dfrac{1}{1005}\right)=0\)
\(\Leftrightarrow x-2010=0\)
\(\Rightarrow x=2010\)
Vậy....
\(\dfrac{x-1009}{1001}+\dfrac{x-4}{1003}+\dfrac{x+2010}{1005}=7\)
\(\dfrac{x-1009}{1001}+\dfrac{x-4}{1003}+\dfrac{x+2010}{1005}-7=0\)
\(\left(\dfrac{x-1009}{1001}-1\right)+\left(\dfrac{x-4}{1003}-2\right)+\left(\dfrac{x+2010}{1005}-4\right)=0\)
\(\dfrac{x-2010}{1001}+\dfrac{x-2010}{1003}+\dfrac{x-2010}{1005}=0\)
\(\left(x-2010\right)\left(\dfrac{1}{1001}+\dfrac{1}{1003}+\dfrac{1}{1005}\right)=0\)
\(x-2010=0\)
\(x=2010\)
Vậy x = 2010
\(\frac{x-1003}{1007}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)
\(\Rightarrow\left(\frac{x-1003}{1007}-1\right)+\left(\frac{x-4}{1003}-1\right)+(\frac{x+2010}{1005}-4)=0\)
\(\Rightarrow\frac{x-2010}{1007}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)
\(\Rightarrow\left(x-2010\right)\left(\frac{1}{1007}+\frac{1}{1003}+\frac{1}{1005}\right)\)
Vì
\(\frac{1}{1007}+\frac{1}{1003}+\frac{1}{1005}\ne0\Rightarrow X-2010=0\Rightarrow x=2010\)
\(\frac{x-1003}{1007}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)
\(\frac{x-1003}{1007}-1+\frac{x-4}{1003}-2+\frac{x+2010}{1005}-4=0\)
\(\frac{x-2010}{1003}+\frac{x-2010}{1005}+\frac{x-2010}{1007}=0\)
\(\left(x-2010\right)\left(\frac{1}{1003}+\frac{1}{1005}+\frac{1}{1007}\right)=0\)
\(\frac{1}{1003}+\frac{1}{1005}+\frac{1}{1007}\ne0\)
\(\Rightarrow x-2010=0\Rightarrow x=2010\)
ta có :
\(\frac{x-1009}{1001}-1+\frac{x-4}{1003}-2+\frac{x+2010}{1005}-4=0\)
hay \(\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\Leftrightarrow x-2010=0\)
hay x =2010
Vậy phương trình có nghiệm x = 2010
Lời giải:
Tập xác định của phương trình
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
Lời giải thu được
\(\frac{x+2012}{2}+\frac{x+2010}{3}+\frac{x+2011}{5}=\frac{x}{1008}+\frac{x-2}{1009}+\frac{x+1}{2015}\)
\(\Leftrightarrow\frac{x+2012}{2}+\frac{x+2010}{3}+\frac{x+2011}{5}-\frac{x}{1008}-\frac{x-2}{1009}-\frac{x+1}{2015}=0\)
\(\Leftrightarrow\frac{x+2012}{2}+2+\frac{x+2010}{3}+2+\frac{x+2011}{5}+1-\frac{x}{1008}-2-\frac{x-2}{1009}-2-\frac{x+1}{2015}-1=0\)
\(\Leftrightarrow\frac{x+2016}{2}+\frac{x+2016}{3}+\frac{x+2016}{5}-\frac{x+2016}{1008}-\frac{x+2016}{1009}-\frac{x+2016}{2015}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}-\frac{1}{1008}-\frac{1}{1009}-\frac{1}{2015}\right)=0\)
Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}-\frac{1}{1008}-\frac{1}{1009}-\frac{1}{2015}\ne0\)
\(\Leftrightarrow x+2016=0\)
\(\Leftrightarrow x=-2016\)
Vậy tập nghiệm của phương trình là \(S=\left\{-2016\right\}\)
\(\frac{x-1009}{1001}\)+\(\frac{x-4}{1003}\)+\(\frac{x+2010}{1005}\)=7
⇔\(\frac{x-1009}{1001}\)+\(\frac{x-4}{1003}\)+\(\frac{x+2010}{1005}\)-7=0
⇔\(\left(\frac{x-1009}{1001}-1\right)+\left(\frac{x-4}{1003}-2\right)+\left(\frac{x+2010}{1005}-4\right)=0\)
⇔\(\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)
⇔(x-2010)\(\left(\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}\right)\)=0
⇔x-2010=0
⇔x=2010
Vậy x=2010
\(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)
⇔ \(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}-7=0\)
⇔\(\left(\frac{x-1009}{1001}-1\right)+\left(\frac{x-4}{1003}-2\right)\)\(+\left(\frac{x+2010}{1005}-4\right)=0\)
⇔\(\frac{x-1009-1001}{1001}+\frac{x-4-2006}{1003}+\)\(\frac{x+2010-4020}{1005}=0\)
⇔\(\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)
⇔\(\left(x-2010\right)\left(\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}\right)=0\)
⇔ \(x-2010=0\left(do\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}>0\right)\)
⇔ \(x=2010\)
Vậy S = {2010}
a, \(\frac{x+1006}{1000}+\frac{x+1007}{999}+\frac{x+1008}{998}+\frac{x+1009}{997}+\frac{x+2022}{4}=0\)
\(\Leftrightarrow\frac{x+1006}{1000}+1+\frac{x+1007}{999}+1+\frac{x+1008}{998}+1+\frac{x+1009}{997}+1+\frac{x+2022}{4}-4=0\)
\(\Leftrightarrow\frac{x+2006}{1000}+\frac{x+2006}{999}+\frac{x+2006}{998}+\frac{x+2006}{997}+\frac{x+2006}{4}=0\)
\(\Leftrightarrow\left(x+2006\right)\left(\frac{1}{1000}+\frac{1}{999}+\frac{1}{998}+\frac{1}{997}+\frac{1}{4}\right)=0\)
Mà \(\frac{1}{1000}+\frac{1}{999}+\frac{1}{998}+\frac{1}{997}+\frac{1}{4}\ne0\)
\(\Rightarrow x+2006=0\Leftrightarrow x=-2006\)
\(\frac{x+6}{1005}+\frac{x+132}{471}+\frac{x+1008}{168}=-12\)
\(\Leftrightarrow\frac{x+6}{1005}+2+\frac{x+132}{471}+4+\frac{x+1008}{168}+6=0\)
\(\Leftrightarrow\frac{x+2016}{1005}+\frac{x+2016}{471}+\frac{x+2016}{168}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{1005}+\frac{1}{471}+\frac{1}{168}\right)=0\)
Dễ thấy \(\frac{1}{1005}+\frac{1}{471}+\frac{1}{168}>0\)nên x + 2016 = 0
Vậy x = -2016
\(\frac{x+6}{1005}+\frac{x+132}{471}+\frac{x+1008}{168}=-12\)
\(\Leftrightarrow\frac{x+6}{3\cdot335}+\frac{x+132}{3\cdot157}+\frac{x+1008}{3\cdot56}=-12\)
\(\Leftrightarrow\frac{x+6}{335}+\frac{x+132}{157}+\frac{x+1008}{56}=-36\)
\(\Leftrightarrow\frac{x}{335}+\frac{x}{157}+\frac{x}{56}+\frac{6}{335}+\frac{132}{157}+18=-36\)
\(\Leftrightarrow\frac{x}{335}+\frac{x}{157}+\frac{x}{56}=-54-\frac{6}{335}-\frac{132}{157}\)
\(\Leftrightarrow x\left(\frac{1}{335}+\frac{1}{157}+\frac{1}{56}\right)=-6-\frac{6}{335}-12-\frac{132}{157}-36\)
\(\Leftrightarrow x\left(\frac{1}{335}+\frac{1}{157}+\frac{1}{56}\right)=\frac{-2016}{335}+\frac{-2016}{157}+\frac{-2016}{56}\)
\(\Leftrightarrow x\left(\frac{1}{335}+\frac{1}{157}+\frac{1}{56}\right)=-2016\left(\frac{1}{335}+\frac{1}{157}+\frac{1}{56}\right)\)
\(\Leftrightarrow x=-2016\)
a)Ta có
\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\)
\(\Rightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Rightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+y^4+2x^2y^2}{a+b}\)
\(\Rightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+y^2-2x^2y^2\right)ab\)
\(\Rightarrow x^4ab+x^4b^2+y^4ab+y^4a^2=x^4ab+y^4ab+2x^2y^2ab\)
\(\Rightarrow x^4b^2+y^4b^2-2x^2y^2ab=0\)
\(\Rightarrow\left(x^2b-y^2a\right)^2=0\)
\(\Rightarrow x^2b-y^2a=0\)
\(\Rightarrow x^2b=y^2a\left(dpcm\right)\)
b) từ kết quả câu a) ta suy ra dc
\(\frac{x^2}{a}=\frac{y^2}{b}\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\)
Mà \(x^2+y^2=1\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{1}{a+b}\)
\(\Rightarrow\left(\frac{x^2}{a}\right)^{1005}=\left(\frac{y^2}{b}\right)^{1005}=\frac{1^{1005}}{\left(a+b\right)^{1005}}\Rightarrow\frac{x^{2010}}{a^{1005}}=\frac{y^{2010}}{b^{1005}}=\frac{1}{\left(a+b\right)^{1005}}\)
\(\Rightarrow\frac{x^{2010}}{a^{1005}}+\frac{y^{2010}}{b^{1005}}=\frac{1}{\left(a+b\right)^{1005}}+\frac{1}{\left(a+b\right)^{1005}}=\frac{2}{\left(a+b\right)^{1005}}\left(dpcm\right)\)
Vầy đúng không nhỉ nếu đúng T I C K cho mình nha
Ko biết có nhanh nhất ko nhưng dù sao cũng xong rồi
x-1009/1001+x-4/1003+x+2010/1005=7
((x-1009/1001)-1))+((x-4/1003)-2)+((x+2010/1005)-4))=0
(x-2010/1001)+(x-2010/1003)+(x-2010/1005)=0
(x-2010)*(1/1001+1/1003+1/1005)=0
okk!!!!!!!!!!!!!!!
Thanks bingodeo nhé :))