K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2022

Bạn gõ Latex để mọi người hiểu đề dễ hơn nhà =))

16 tháng 2 2022

đk : x khác -1 ; -2 

sửa đề \(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x+5}{\left(x+1\right)\left(x+2\right)}\)

\(\Rightarrow2x-4-x-1=3x+5\Leftrightarrow x-5=3x+5\Leftrightarrow2x+10=0\Leftrightarrow x=-5\left(tm\right)\)

26 tháng 1 2021

a, làm tương tự với phần b bài nãy bạn đăng 

b, \(\left(x+1\right)^2-5=x^2+11\)

\(\Leftrightarrow x^2+2x+1-5=x^2+11\)

\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)

Vậy tập nghiệm của phương trình là S = { 5 } ( kết luận như thế với các phần sau nhé ! ) 

c, \(3\left(3x-1\right)=3x+5\Leftrightarrow9x-3-3x-5=0\)

\(\Leftrightarrow6x-8=0\Leftrightarrow x=\frac{4}{3}\)

d, \(3x\left(2x-3\right)-3\left(3+2x^2\right)=0\)

\(\Leftrightarrow6x^2-9x-9-6x^2=0\Leftrightarrow-9x=9\Leftrightarrow x=-1\)

e, khai triển nó ra rút gọn rồi giải thôi nhé! ( tự làm )

f, \(\left(x-1\right)^2-x\left(x+1\right)+3\left(x-2\right)+5=0\)

\(\Leftrightarrow x^2-2x+1-x^2+x+3x-6+5=0\)

\(\Leftrightarrow2x=0\Leftrightarrow x=\frac{0}{2}\)vô lí 

Vậy phương trình vô nghiệm 

2 tháng 2 2021

a) ( 2x - 1 )( 2x + 1 ) - ( x - 1 )2 = 3x( x - 2 )

<=> 4x2 - 1 - ( x2 - 2x + 1 ) - 3x( x - 2 ) = 0

<=> 4x2 - 1 - x2 + 2x - 1 - 3x2 + 6x = 0

<=> 8x - 2 = 0

<=> x = 1/4

Vậy phương trình có 1 nghiệm x = 1/4

b) ( 4x - 3 )( 3x + 2 ) = 2( 3x - 1 )( 2x + 5 )

<=> 12x2 - x - 6 - 2( 6x2 + 13x - 5 ) = 0

<=> 12x2 - x - 6 - 12x2 - 26x + 10 = 0

<=> -27x + 4 = 0

<=> x = 4/27

Vậy phương trình có 1 nghiệm x = 4/27

c) ( x - 1 )( x2 + x + 1 ) - 5( 2x - 3 ) = x( x2 - 3 )

<=> x3 - 1 - 10x + 15 - x( x2 - 3 ) = 0

<=> x3 + 14 - 10x - x3 + 3x = 0

<=> -7x + 14 = 0

<=> x = 2

Vậy phương trình có nghiệm x = 2

d) \(\frac{3x-2}{4}-\frac{x+4}{3}=\frac{1+x}{12}\)

<=> \(\frac{3x}{4}-\frac{2}{4}-\frac{x}{3}-\frac{4}{3}=\frac{1}{12}+\frac{x}{12}\)

<=> \(\frac{3}{4}x-\frac{1}{3}x-\frac{1}{12}x=\frac{1}{12}+\frac{1}{2}+\frac{4}{3}\)

<=> \(x\left(\frac{3}{4}-\frac{1}{3}-\frac{1}{12}\right)=\frac{23}{12}\)

<=> \(x\cdot\frac{1}{3}=\frac{23}{12}\)

<=> x = 23/4

Vậy phương trình có 1 nghiệm x = 23/4

27 tháng 6 2020

\(\frac{x-2}{x+1}>1\left(đkxđ:x\ne-1\right)\)

<=> \(\frac{x-2}{x+1}-1>0\)

<=> \(\frac{x-2}{x+1}-\frac{x-1}{x+1}>0\)

<=> \(\frac{-3}{x+1}>0\)

Để \(\frac{-3}{x+1}>0\)=> \(x+1< 0\)<=> \(x< -1\left(tmđk\right)\)

Vậy nghiệm của bất phương trình là x < -1

\(\frac{3x-3}{x-1}\le2\left(đkxđ:x\ne1\right)\)

Rút gọn vế trái ta được : \(3\le2\)( vô lí )

Vậy bất phương trình vô nghiệm

11 tháng 8 2021

1/ \(2\left(x-5\right)=\left(-x-5\right)\)

\(\Leftrightarrow2x-10=-x-5\)

\(\Leftrightarrow3x=5\)

\(\Leftrightarrow x=\dfrac{5}{3}\)

Vậy: \(S=\left\{\dfrac{5}{3}\right\}\)

==========

2/ \(2\left(x+3\right)-3\left(x-1\right)=2\)

\(\Leftrightarrow2x+6-3x+3=2\)

\(\Leftrightarrow-x=-7\)

\(\Leftrightarrow x=7\)

Vậy: \(S=\left\{7\right\}\)

==========

3/ \(4\left(x-5\right)-\left(3x-1\right)=x-19\)

\(\Leftrightarrow4x-20-3x+1=x-19\)

\(\Leftrightarrow0x=0\)

Vậy: \(S=\left\{x|x\text{ ∈ }R\right\}\) 

===========

4/ \(7-\left(x-2\right)=5\left(2-3x\right)\)

\(\Leftrightarrow7-x+2=10-15x\)

\(\Leftrightarrow14x=1\)

\(\Leftrightarrow x=\dfrac{1}{14}\)

Vậy: \(S=\left\{\dfrac{1}{14}\right\}\)

==========

5/ \(2x-\left(5-3x\right)=7x+1\)

\(\Leftrightarrow2x-5+3x=7x+1\)

\(\Leftrightarrow-2x=6\)

\(\Leftrightarrow x=-3\)

Vậy: \(S=\left\{-3\right\}\)

[---]

Chúc bạn học tốt.

11 tháng 8 2021

1. \(2\left(x-5\right)=-x-5\)

\(\Leftrightarrow3x=5\)

\(\Leftrightarrow x=\dfrac{5}{3}\)

Vậy \(S=\left\{\dfrac{5}{3}\right\}\)

2. \(2\left(x+3\right)-3\left(x-1\right)=2\)

\(\Leftrightarrow2x+6-3x+3=2\)

\(\Leftrightarrow x=7\)

Vậy \(S=\left\{7\right\}\)

3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)

\(\Leftrightarrow4x-20-3x+1-x+19=0\)

\(\Leftrightarrow0x=0\)

Vậy \(S=\left\{x\in R\right\}\)

4. \(7-\left(x-2\right)=5\left(2-3x\right)\)

\(\Leftrightarrow7-x+2-10+15x=0\)

\(\Leftrightarrow14x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{14}\)

Vậy \(S=\left\{\dfrac{1}{14}\right\}\)

4. \(2x-\left(5-3x\right)=7x+1\)

\(\Leftrightarrow2x-5+3x-7x-1=0\)

\(\Leftrightarrow-2x-6=0\)

\(\Leftrightarrow x=-3\)

Vậy \(S=\left\{-3\right\}\)

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

4 tháng 5 2017

1/a/\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-6\end{cases}}}\)

Vậy ...................

b/ ĐKXĐ:\(x\ne2;x\ne5\)

.....\(\Rightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x^2-10x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(nhận\right)\\x=5\left(loại\right)\end{cases}}}\)

Vậy ..............

24 tháng 2 2022

`Answer:`

`1.`

a. \(\left(x+5\right)\left(2x+1\right)-x^2+25=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x^2-25\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1-x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}}}\)

b. \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\left(ĐKXĐ:x\ne2;x\ne5\right)\)

\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow\frac{3x\left(x-5\right)-x\left(x-2\right)+3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)+3x=0\)

\(\Leftrightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\text{(Không thoả mãn)}\end{cases}}}\)

`2.`

\(ĐKXĐ:x\ne-m-2;x\ne m-2\)

Ta có: \(\frac{x+1}{x+2+m}=\frac{x+1}{x+2-m}\left(1\right)\)

a. Khi `m=-3` phương trình `(1)` sẽ trở thành: \(\frac{x+1}{x-1}=\frac{x+1}{x+5}\left(x\ne1;x\ne-5\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{x-1}=\frac{1}{x+5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=x+5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\-1=5\text{(Vô nghiệm)}\end{cases}}}\)

b. Để phương trình `(1)` nhận `x=3` làm nghiệm thì

\(\Leftrightarrow\hept{\begin{cases}\frac{3+1}{3+2-m}=\frac{3+1}{3+2-m}\\3\ne-m-2\\3\ne m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{5+m}=\frac{4}{5-m}\\m\ne\pm5\end{cases}}\Leftrightarrow\hept{\begin{cases}5+m=5-m\\m\ne\pm5\end{cases}}\Leftrightarrow m=0\)

9 tháng 1 2021

Câu 1 : 

a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)

\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)

\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)

Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)

tương tự 

16 tháng 5 2021

\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)

\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)

\(< =>95-24x+40=6-4x-15x+5\)

\(< =>-24x+135=-19x+11\)

\(< =>5x=135-11=124\)

\(< =>x=\frac{124}{5}\)