K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

X-\(\frac{3}{2}\)+X-\(\frac{5}{6}\)=\(-\frac{1}{3}\)

2X=\(-\frac{1}{3}\)+\(\frac{3}{2}+\frac{5}{6}\)

➜ 2X=2

➜X = 1

Vậy....................

2 tháng 4 2020

Lộn đề rồi

Tôi nghĩ là như này :)) Sai thì chịu nhá :((

Ta có pt : \(\left|x+1\right|+3\left|x-1\right|=x+2+\left|x\right|+2\left|x-2\right|\) (1)

Ta thấy VT pt (1) là : \(\left|x+1\right|+3\left|x-1\right|\ge0\forall x\)

Nên VP pt (1) cũng phải lớn hơn bằng 0

Có nghĩa là \(x+2\ge0\) \(\Leftrightarrow x\ge-2\)

Khi đó : \(\left\{{}\begin{matrix}\left|x+1\right|=-\left(x+1\right)\\3\left|x-1\right|=3\left(1-x\right)\\\left|x\right|=-x\\2\left|x-2\right|=2\left(2-x\right)\end{matrix}\right.\)

Vậy pt (1) \(\Leftrightarrow-x-1+3-3x=x+2-x+4-2x\)

\(\Leftrightarrow2x=-4\Leftrightarrow x=-2\) ( thỏa mãn )

Vậy \(x=-2\) thỏa mãn pt.

6 tháng 2 2020
\(\left|x+1\right|\) - + + + +
3\(\left|x-1\right|\) - - + + +
\(\left|x\right|\) - - - + +
\(2\left|x-2\right|\) - - - - +
PT 2x-4=5x-2 2x-4=5x-2 -4x+2=2x-2 -4x+2=-2x+6

-1 0 1 2

1) x=-2/3>-1( loại)

2)

NV
28 tháng 6 2019

Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)

\(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)

\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)

Đặt \(x+\frac{1}{x}=a\) (\(\left|a\right|\ge2\)) \(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)

\(6\left(a^2-2\right)+7a-36=0\)

\(\Leftrightarrow6a^2+7a-48=0\)

Nghiệm xấu

13 tháng 4 2020

Ta có : x2-2x+3|x-1| < 3

  •         Nếu x\(\ge\)1 thì có : x2 -2x+3(x-1) < 3 \(\Leftrightarrow\)x2-x-3<3 \(\Leftrightarrow\)x2-x-6<0 \(\Leftrightarrow\)(x-3)(x+2)<0\(\Leftrightarrow\)x<3 hoặc x<-2 =>x<-2
  •         Nếu x<1 thì ta có : 
13 tháng 4 2020
  • Nếu 1<0 thì ta có : x2-2x+3(1-x) < 3 \(\Leftrightarrow\)x2-5x+3 < 3\(\Leftrightarrow\)x2-5x < 0 \(\Leftrightarrow\)x(x-5) < 0\(\Rightarrow\)x< 0  hoặc x< 5 
  •  

\(\left(x-2\right)\left(4x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\frac{5}{4}\end{matrix}\right.\\ \Rightarrow S=\left\{-\frac{5}{4};2\right\}\)

1 tháng 4 2020

x-2=0 hoặc 4x+5=0

x=2 hoặc x=\(\frac{-5}{4}\)

10 tháng 3 2019

\(\left(x-1\right)^3+\left(2x-1\right)^3=\left(3x-2\right)^3\)

\(\left(3x-2\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(2x-1\right)+\left(2x-1\right)^2-\left(3x-2\right)^2\right]=0\)

\(\left(3x-2\right).\left(-3\right)\left(2x^2-3x+1\right)=0\)

\(\left(3x-2\right)\left(x-1\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy ....

8 tháng 2 2018

Dat x2+2x+2=a (a>0)

pt<=> \(\dfrac{a-1}{a}+\dfrac{a}{a+1}=\dfrac{7}{6}\)

=> \(\dfrac{\left(a-1\right)\left(a+1\right)}{a\left(a+1\right)}+\dfrac{a.a}{a\left(a+1\right)}=\dfrac{7}{6}\)

=> \(\dfrac{a^2-1}{a\left(a+1\right)}+\dfrac{a^2}{a\left(a+1\right)}=\dfrac{7}{6}\)

=> (2a2-1).6=7a(a+1)

=> 12a2-6=7a2+7a

=> 5a2-7a-6=0

8 tháng 2 2018

\(\dfrac{x^2+2x+1}{x^2+2x+2}+\dfrac{x^2+2x+2}{x^2+2x+3}=\dfrac{7}{6}\)

Đặt x2 + 2x + 1 = t, ta có:

\(\dfrac{t}{t+1}+\dfrac{t+1}{t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow\)\(\dfrac{t\left(t+2\right)}{\left(t+1\right)\left(t+2\right)}+\dfrac{\left(t+1\right)^2}{\left(t+2\right)\left(t+1\right)}=\dfrac{7}{6}\)

\(\Leftrightarrow\) \(\dfrac{t^2+2t}{t^2+3t+2}+\dfrac{t^2+2t+1}{t^2+3t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow\)\(\dfrac{t^2+2t+t^2+2t+1}{t^2+3t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow\)\(\dfrac{2t^2+4t+1}{t^2+3t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow\)6(2t2+4t+1) = 7(t2 + 3t + 2)

\(\Leftrightarrow\) 12t2 + 24t + 6 = 7t2 + 21t + 14

\(\Leftrightarrow\) 12t2 + 24t + 6 - 7t2 - 21t - 14 = 0

\(\Leftrightarrow\) 5t2 + 3t - 8 = 0

\(\Leftrightarrow\) 5t2 - 5t + 8t - 8 = 0

\(\Leftrightarrow\) 5t(t - 1) + 8(t - 1) = 0

\(\Leftrightarrow\) (5t + 8)(t - 1) = 0

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5t+8=0\\t-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=-\dfrac{8}{5}\\t=1\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2+2x+1=-\dfrac{8}{5}\left(vôlívì:x^2+2x+1=\left(x+1\right)^2\ge0>-\dfrac{8}{5}\right)\\x^2+2x+1=1\end{matrix}\right.\)\(\Leftrightarrow\)x2 + 2x + 1 = 1

\(\Leftrightarrow\) x2 + 2x = 0

\(\Leftrightarrow\)x(x + 2) = 0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy phương trình có n0 là S={-2;0}