Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)=\(\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}=\sqrt{a-2}+2+2-\sqrt{a-2}=4\) (do2<=a<=4)
1. a) Ta có: \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{x+2\sqrt{x-1}}.2=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{x+\sqrt{2-1}}.2=\frac{x+3}{2}\)
Bạn tự khai triển ra nha!
b) Tương tự
2) Tự làm
Ps: Ms lớp 6 nên chỉ làm được như vậy thôi! Bạn tự khai triển thành bài nhé!
1)
a) đk x>=1
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\frac{x+3}{2}\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=\frac{x+3}{2}\)
vs x>=2
thì pt có dạng
\(\sqrt{x-1}+1+\sqrt{x-1}-1=\frac{x+3}{2}\)
\(4\sqrt{x-1}=x+3\)
\(16x-16=x^2+6x+9\)
\(x^2-10x+25=0\)
x=5(tm)
vs 0<=x<1
pt \(2=\frac{x+3}{2}\)
\(x+3=4\)
\(x=1\)
1) pt có 2 dấu bằng.......t bỏ =1 được hong?
ĐK: \(\left\{{}\begin{matrix}x-2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}\le x\\x\ge1\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}2x-1\le x^2\\x\ge1\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x^2-2x+1\ge0\\x\ge1\end{matrix}\right.\Leftrightarrow}x\ge1}\)
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}\Leftrightarrow x-2\sqrt{x-1}=x-1\Leftrightarrow4x-4=1\Leftrightarrow x=\dfrac{5}{4}\left(N\right)\)
Kl: x= 5/4
2) \(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}=\sqrt{\left(a-2\right)+2\cdot2\cdot\sqrt{a-2}+4}+\sqrt{\left(a-2\right)-2\cdot2\cdot\sqrt{a-2}+4}=\sqrt{\left(a-2+2\right)^2}+\sqrt{\left(a-2-2\right)^2}=a+a-4=2a-4\)
chép lại cái đk, ghét nhất cái trò này của H24!! Viết đã đời cuối cùng công cốc !!
\(\left\{{}\begin{matrix}x-2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}\le x\\x\ge1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x-4\le x^2\\x\ge1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+4\ge0\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)