K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

\(\Leftrightarrow\left|3x-4\right|-\left|x-2\right|=0\)

* Với \(x< \dfrac{4}{3}\)

pt \(\Leftrightarrow-3x+4-2+x=0\)

\(\Leftrightarrow x=1\left(thoa\right)\)

* Với \(\dfrac{4}{3}\le x< 2\)

pt \(\Leftrightarrow3x-4-2+x=0\)

\(\Leftrightarrow x=\dfrac{3}{2}\left(thoa\right)\)

* Với \(2\le x\)

pt \(\Leftrightarrow3x-4-x+2=0\)

\(\Leftrightarrow x=1\left(loai\right)\)

Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

27 tháng 2 2016

\(\Leftrightarrow\)  \(\left(x^2+3x-4\right)^2+4\left(x^2+3x-4\right)+4=x^2+4x+4\)

\(\Leftrightarrow\) \(\left(x^2+3x-2\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow\) \(\begin{cases}x^2+3x-2=x+2\\x^2+3x-2=-x+2\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}x^2+2x-4=0\\x^2+4x=0\end{cases}\)

\(\Leftrightarrow\)  \(x\in\left\{-1\pm\sqrt{5};-4;0\right\}\)

Vậy phương trình đã cho có tập nghiệm T =\(\left\{-1\pm\sqrt{5};-4;0\right\}\)

7 tháng 4 2017

a) <=>

<=>

<=> 6(3x + 1) - 4(x - 2) - 3(1 - 2x) < 0

<=> 20x + 11 < 0

<=> 20x < - 11

<=> x <

b) <=> 2x2 + 5x – 3 – 3x + 1 ≤ x2 + 2x – 3 + x2 - 5

<=> 0x ≤ -6.

Vô nghiệm.

26 tháng 2 2016

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+4\right)=0\)

<=>x=1 hoặc x=2 hoặc x=-4 hoặc x=-1

26 tháng 2 2016

⇔(x−2)(x−1)(x−1)(x+1)(x+1)(x+4)=0⇔(x−2)(x−1)(x−1)(x+1)(x+1)(x+4)=0

<=>x=1 hoặc x=2 hoặc x=-4 hoặc x=-1

26 tháng 2 2016

\(\begin{cases}x^5-3x^4+2x^2-2x+2\ge0\\x^4-2x^3-x+2=0\\x^2-3x+2=0\\\left(x^2-1\right)\left(x-2\right)=0\end{cases}\)  (*)

 

\(x^5-3x^4+2x^2-2x+2\ge0\) (1)

\(x^4-2x^3-x+2=0\) (2)

\(x^2-3x+2=0\)  (3)

\(\left(x^2-1\right)\left(x-2\right)=0\)  (4)

Từ 

\(x^2-3x+2=0\)  (3) \(\Leftrightarrow\) x=1 hoặc x=2

x=1 thỏa mãn tất cả các phương trình, bất phương trình còn lại nên là nghiệm của hệ

x=2 không thỏa mãn (1) nên x=2 không là nghiệm của hệ

Vậy hệ phương trình (*) có nghiệm duy nhất là x=1

 

 

NV
11 tháng 11 2019

a/ \(\left[{}\begin{matrix}x^2-2=x-4\\x^2-2=4-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+2=0\left(vn\right)\\x^2+2x-6=0\end{matrix}\right.\) \(\Rightarrow x=-1\pm\sqrt{7}\)

b/ \(\left[{}\begin{matrix}x^2+3x-1=x^2+x-5\\x^2+3x-1=-x^2-x+5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-4\\2x^2+4x-6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-3\end{matrix}\right.\)

c/ \(\left[{}\begin{matrix}x^2+3x-1=x+2\\x^2+3x-1=-x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-3=0\\x^2+4x+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=-2\pm\sqrt{3}\end{matrix}\right.\)

NV
11 tháng 11 2019

d/

\(\left[{}\begin{matrix}x-2=x-1\\x-2=1-x\end{matrix}\right.\) \(\Rightarrow x=\frac{3}{2}\)

e/ \(x\ge3\)

\(\left[{}\begin{matrix}3x-2=x-3\\3x-2=3-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\left(l\right)\\x=\frac{5}{4}\left(l\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

f/ \(x\ge2\)

\(\left[{}\begin{matrix}x^2-2x=x-2\\x^2-2x=2-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\x^2-x-2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=2\\x=-1\left(l\right)\\\end{matrix}\right.\)

6 tháng 5 2016

\(\Leftrightarrow\frac{2^{3x^2-3x+1}}{3^{x^2-x+1}}.\frac{3^{2x^2-3x+2}}{5^{2x^2-3x+2}}.\frac{5^{3x^2-4x+3}}{7^{3x^2-4x+3}}.\frac{7^{4x^2-5x+4}}{2^{4x^2-5x+4}}=210^{\left(x-1\right)^2}\)

\(\Leftrightarrow\frac{\left(3.5.7\right)^{x^2-x+1}}{2^{x^2-2x+1}}=2^{\left(x-1\right)^2}.\left(3.5.7\right)^{\left(x-1\right)^2}\)

\(\Leftrightarrow105^x=2^{2\left(x-1\right)^2}\)

Lấy Logarit cơ số 2 hai vế, ta được :

\(2\left(x-1\right)^2=\left(\log_2105\right)x\)

\(\Leftrightarrow2x^2-\left(4+\log_2105\right)x+2=0\)

\(\Leftrightarrow x=\frac{\left(2+\log_2105\right)\pm\sqrt{\log^2_2105+8\log_2105}}{4}\)

Vậy phương trình đã cho có 2 nghiệm