K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

a) ta có : \(2sin^2x+3cos2x=0\Leftrightarrow2sin^2x+3\left(1-2sin^2x\right)=0\)

\(\Leftrightarrow3-4sin^2x=0\Leftrightarrow sin^2x=\dfrac{3}{4}\Leftrightarrow sinx=\pm\dfrac{\sqrt{3}}{2}\)

th1 : \(sinx=\dfrac{\sqrt{3}}{2}\Leftrightarrow sinx=sin\dfrac{\pi}{3}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

th2 : \(sinx=\dfrac{-\sqrt{3}}{2}\Leftrightarrow sinx=sin\left(\dfrac{-\pi}{3}\right)\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\pi+\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\)

vậy phương trình có 4 hệ nghiệm : \(x=\dfrac{\pi}{3}+k2\pi;x=\dfrac{2\pi}{3}+k2\pi;x=\dfrac{-\pi}{3}+k2\pi;x=\dfrac{4\pi}{3}+k2\pi\)

câu b bn làm tương tự cho quen nha

30 tháng 8 2018

a) ta có : \(2sin^2x+3cos2x=0\Leftrightarrow2sin^2x+3\left(1-2sin^2x\right)=0\)

\(\Leftrightarrow3-4sin^2x=0\Leftrightarrow sin^2x=\dfrac{3}{4}\Leftrightarrow sinx=\pm\dfrac{\sqrt{3}}{2}\)

th1 : \(sinx=\dfrac{\sqrt{3}}{2}\Leftrightarrow sinx=sin\dfrac{\pi}{3}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

th2 : \(sinx=\dfrac{-\sqrt{3}}{2}\Leftrightarrow sinx=sin\left(\dfrac{-\pi}{3}\right)\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\pi+\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\)

vậy phương trình có 4 hệ nghiệm : \(x=\dfrac{\pi}{3}+k2\pi;x=\dfrac{2\pi}{3}+k2\pi;x=\dfrac{-\pi}{3}+k2\pi;x=\dfrac{4\pi}{3}+k2\pi\)

NV
18 tháng 7 2020

a/

\(\Leftrightarrow\left(sinx-1\right)\left(sinx-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=4\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

b/

\(\Leftrightarrow\left(cos2x-1\right)\left(2cosx-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

c/

\(\Leftrightarrow\left(sin3x-\frac{3}{4}\right)^2+\frac{7}{16}=0\)

Vế trái luôn dương nên pt vô nghiệm

NV
24 tháng 7 2020

d/

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(\Leftrightarrow2\sqrt{2}\left(tanx+1\right)=\frac{3}{cos^2x}+2\)

\(\Leftrightarrow2\sqrt{2}tanx+2\sqrt{2}=3\left(1+tan^2x\right)+2\)

\(\Leftrightarrow3tan^2x-2\sqrt{2}tanx+5-2\sqrt{2}=0\)

Pt vô nghiệm

NV
24 tháng 7 2020

c/

\(\Leftrightarrow1-sin^2x+\sqrt{3}sinx.cosx-1=0\)

\(\Leftrightarrow\sqrt{3}sinx.cosx-sin^2x=0\)

\(\Leftrightarrow sinx\left(\sqrt{3}cosx-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\\sqrt{3}cosx=sinx\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\tanx=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)

29 tháng 8 2018

ta có : \(2sin^2x+2cos^4x=2cos^2x+sinx.cosx\)

\(\Leftrightarrow2sin^2x+2cos^2x\left(cos^2x-1\right)-sinx.cosx=0\)

\(\Leftrightarrow2sin^2x-2cos^2x.sin^2x-sinx.cosx=0\)

\(\Leftrightarrow2sin^2x\left(1-cos^2x\right)-sinx.cosx=0\)

\(\Leftrightarrow2sin^4x-sinx.cosx=sinx\left(2sin^3x-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\2sin^3x-cosx=0\end{matrix}\right.\)

tới đây bn giải như phương trình dạng bình thường nha :)

NV
28 tháng 12 2020

ĐKXĐ: \(sinx\ne\pm1\)

\(\dfrac{3cos2x-2sinx+5}{2\left(1-sin^2x\right)}=0\)

\(\Leftrightarrow3\left(1-2sin^2x\right)-2sinx+5=0\)

\(\Leftrightarrow-6sin^2x-2sinx+8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(loại\right)\\sinx=-\dfrac{4}{3}< -1\left(loại\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

28 tháng 12 2020

tại sao \(cos\left(\dfrac{201\pi}{2}-x\right)\)lại là sinx vậy cậu

NV
21 tháng 9 2020

a. ĐKXĐ: ...

\(1+cot^2x=\frac{2}{tanx}\)

\(\Leftrightarrow1+cot^2x=2cotx\)

\(\Leftrightarrow\left(cotx-1\right)^2=0\Leftrightarrow cotx=1\)

\(\Rightarrow x=\frac{\pi}{4}+k\pi\)

b. ĐKXĐ: ...

\(cosx\left(\frac{sinx}{cosx}+2cosx\right)-2=0\)

\(\Leftrightarrow sinx+2cos^2x-2=0\)

\(\Leftrightarrow sinx-2\left(1-cos^2x\right)=0\)

\(\Leftrightarrow sinx-2sin^2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)