Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện tự làm nha:
\(8x^2+11x+1=\left(x+1\right)\sqrt{4x^2+6x+5}\)
\(\Leftrightarrow\left(8x^2+11x+1\right)^2=\left(x+1\right)^2.\left(4x^2+6x+5\right)\)
\(\Leftrightarrow30x^4+81x^3+58x^2+3x-2=0\)
\(\Leftrightarrow\left(5x^2+6x-1\right)\left(6x^2+9x+2\right)=0\)
Tự làm nốt nhé.
@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng
Ta viết lại pt thành: \(\left(2x-3\right)^2+x-3=\left(x-1\right)\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\)
Đặt: \(\left\{{}\begin{matrix}a=2x-3\\b=\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\end{matrix}\right.\) ta thu được hệ pt:
\(\left\{{}\begin{matrix}a^2+x-3=\left(x-1\right)b\\b^2+x-3=\left(x-1\right)a\end{matrix}\right.\) Trừ 2pt của hệ ta có:
\(\Leftrightarrow a^2-b^2=\left(x-1\right)\left(b-a\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+x-1\right)=0\)
Ta có trường hợp 1:
\(a=b\Leftrightarrow2x-3=\sqrt{2x^2-6x+6}\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{3}{2}\\2x^2-6x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3-\sqrt{3}}{2}\left(ktm\right)\\x=\frac{3+\sqrt{3}}{2}\left(tmđk\right)\end{matrix}\right.\)
Tương tự ta có trường hợp 2:
\(2x-3+\sqrt{2x^2-6x+6}+x-3=0\Leftrightarrow\sqrt{2x^2-6x}=6-3x\Leftrightarrow\left\{{}\begin{matrix}x\le2\\7x^2-30x+36=0\end{matrix}\right.\left(vn\right)\)
Vậy pt có \(n_0\) \(S=\left\{x=\frac{3+\sqrt{3}}{2}\right\}\)
ĐK \(x\ge\frac{4}{7}\)
PT <=> \(x^2+6x-1+2=2\sqrt{\left(7x-4\right)\left(x^2-x+3\right)}\)
<=> \(\left(\sqrt{x^2-x+3}-\sqrt{7x-4}\right)^2+2=0\) vô nghiệm do VT>0 với mọi \(x\ge\frac{4}{7}\)
Vậy PT vô nghiệm
a.
$x^2-11=0$
$\Leftrightarrow x^2=11$
$\Leftrightarrow x=\pm \sqrt{11}$
b. $x^2-12x+52=0$
$\Leftrightarrow (x^2-12x+36)+16=0$
$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)
Vậy pt vô nghiệm.
c.
$x^2-3x-28=0$
$\Leftrightarrow x^2+4x-7x-28=0$
$\Leftrightarrow x(x+4)-7(x+4)=0$
$\Leftrightarrow (x+4)(x-7)=0$
$\Leftrightarrow x+4=0$ hoặc $x-7=0$
$\Leftrightarrow x=-4$ hoặc $x=7$
d.
$x^2-11x+38=0$
$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$
$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)
Vậy pt vô nghiệm
e.
$6x^2+71x+175=0$
$\Leftrightarrow 6x^2+21x+50x+175=0$
$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$
$\Leftrightarrow (3x+25)(2x+7)=0$
$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$
$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$
Phương trình nào?
\(\left(x^3+6x^2+11x-2\right)^2+13\left(x^3+6x^2+11x-2\right)=-40\)