Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+3=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}+3\)
\(\Leftrightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)\)
\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)(1)
Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)(2)
Từ (1) và (2) \(\Rightarrow x+2009=0\)\(\Rightarrow x=-2009\)
Vậy \(x=-2009\)
Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)
=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)
=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)
=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)
=> \(x^2-1=0\)
=> \(x^2=1\)
=> \(x=\pm1\)
Vậy phương trình có 2 nghiệm là x = 1, x = -1 .
câu 2 :
\(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)
\(\Rightarrow x+2009=0\)
\(\Rightarrow x=-2009\)
theo đề baiif nên
x+1/2008+x+2/2007+x+3/2006-(x+4/2005)-(x+5/2004)-(x+6/2003)=0
suy ra [(x+1/2008)+1]+[(x+2/2007)+1]+[x+3/2006)+1]-[(x+4/2005)+1]-[(x+5/2004)+1]-[(x+6/2003)+1]=0
suy ra (x+2009/2008)+(x+2009/2007)+(x+2009/2006)-(x+2009/2005)-(x+2009/2004)-(x+2009/2003)=0
nên (x+2009)(1/2008+1/2007+1/2006-1/2005-1/2004-1/2003)=0
V1 V2
Dễ thấy V2>0 NÊN x+2009=0 suy ra x=-2009
\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)
\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)
\(\text{Giải}\)
\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)
a, Làm
\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)
<=>\(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2016}+\frac{x+2021}{2015}\)
<=>\(\left(x+2021\right)\left(\frac{1}{2020}+\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
<=> x+2021=0
<=> x=-2021
Kl:......................
b, Làmmmmm
\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)
<=> \(\frac{2006-x}{2004}=\frac{2006-x}{2005}+\frac{2006-x}{2006}\)
<=> \(\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\right)=0< =>2006-x=0\)
<=> x=2006
Kl:..............
Bài làm
\(\frac{x+2}{2005}+\frac{x+3}{2004}+\frac{x+4}{2003}+3=0\)
\(\Leftrightarrow\left(\frac{x+2}{2005}+1\right)+\left(\frac{x+3}{2004}+1\right)+\left(\frac{x+4}{2003}+1\right)=0\)
\(\Leftrightarrow\left(\frac{x+2+2005}{2005}\right)+\left(\frac{x+3+2004}{2004}\right)+\left(\frac{x+4+2003}{2003}\right)=0\)
\(\Leftrightarrow\frac{x+2007}{2005}+\frac{x+2007}{2004}+\frac{x+2007}{2003}=0\)
\(\Leftrightarrow\left(x+2007\right).\frac{1}{2005}+\left(x+2007\right).\frac{1}{2004}+\left(x+2007\right).\frac{1}{2003}=0\)
\(\Leftrightarrow\left(x+2007\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2007=\frac{0}{\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}}\)
\(\Leftrightarrow x+2007=0\)
\(\Leftrightarrow x=-2007\)
Vậy phương trình trên có tập nghiệm S = { -2007 }
# Học tốt #
\(\frac{x+2}{2005}+\frac{x+3}{2004}+\frac{x+4}{2003}+3=0\)
\(\Leftrightarrow\left(\frac{x+2}{2005}+1\right)+\left(\frac{x+3}{2004}+1\right)+\left(\frac{x+4}{2003}+1\right)=0\)
\(\Leftrightarrow\frac{x+2007}{2005}+\frac{x+2007}{2004}+\frac{x+2007}{2003}=0\)
\(\Leftrightarrow\left(x+2007\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)(1)
Vì \(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}>0\)(2)
Từ (1), (2) \(\Rightarrow x+2017=0\)\(\Leftrightarrow x=-2017\)
Vậy \(x=-2017\)
Ta có: \(2-x+2005=1-x+2006=-x+2007\)
\(\frac{2-x}{2005}-1=\frac{1-x}{2006}-\frac{x}{2007}\)
\(\Leftrightarrow\frac{2-x}{2005}+1-2=\frac{1-x}{2006}+1+\left(\frac{-x}{2007}+1\right)-2\)
\(\Leftrightarrow\frac{2007-x}{2005}=\frac{2007-x}{2006}+\frac{2007-x}{2007}\)
\(\Leftrightarrow\left(2007-x\right)\left(\frac{1}{2005}-\frac{1}{2006}-\frac{1}{2007}\right)=0\)
\(\Rightarrow2007-x=0\)
\(\Rightarrow x=2007\)
\(\frac{2-x}{2005}-1=\frac{1-x}{2006}-\frac{x}{2007}\)
\(\Leftrightarrow\frac{2-x}{2005}-\frac{1-x}{2006}+\frac{x}{2007}-1=0\)
\(\Leftrightarrow\frac{2-x}{2005}+1-\frac{1-x}{2006}-1+\frac{x}{2007}-1=0\)
\(\Leftrightarrow\left(\frac{2-x}{2005}+1\right)-\left(\frac{1-x}{2006}+1\right)-\left(1-\frac{x}{2007}\right)=0\)
\(\Leftrightarrow\frac{2-x+2005}{2005}-\frac{1-x+2006}{2006}-\frac{2007-x}{2007}=0\)
\(\Leftrightarrow\frac{2007-x}{2005}-\frac{2007-x}{2006}-\frac{2007-x}{2007}=0\)
\(\Leftrightarrow\left(2007-x\right)\left(\frac{1}{2005}-\frac{1}{2006}-\frac{1}{2007}\right)=0\)
\(\Leftrightarrow2007-x=0\) < Vì \(\frac{1}{2005}-\frac{1}{2006}-\frac{1}{2007}\ne0\)>
\(\Leftrightarrow x=2007\)
VẬY \(x=2007\)
Ta có : \(\frac{x+5}{2006}+\frac{x+6}{2005}+\frac{x+7}{2004}=-3\)
=> \(\left(\frac{x+5}{2006}+1\right)+\left(\frac{x+6}{2005}+1\right)+\left(\frac{x+7}{2004}+1\right)=-3+3\)
=> \(\frac{x+5+2006}{2006}+\frac{x+6+2005}{2005}+\frac{x+7+2004}{2004}=0\)
=> \(\frac{x+2011}{2006}+\frac{x+2011}{2005}+\frac{x+2011}{2004}=0\)
=> \(\left(x+2011\right)\left(\frac{1}{2006}+\frac{1}{2005}+\frac{1}{2004}\right)=0\)
Ta có : \(\frac{1}{2006}+\frac{1}{2005}+\frac{1}{2004}\ne0\)
=> x + 2011 = 0
=> x = -2011