Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x3 +x2 -12x=0
\(\Leftrightarrow\)x3 +4x2-3x2-12x=0
\(\Leftrightarrow\) x2(x+4)-3x(x+4)=0
\(\Leftrightarrow\) (x2-3x)(x+4)=0
\(\Leftrightarrow\)x(x-3)(x+4)=0
\(\left[\begin{matrix}x=0\\x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[\left[\begin{matrix}x=0\\x=3\\x=-4\end{matrix}\right.\)
Vậy S\(=\)\(\left\{0;3;-4\right\}\)
b.x3-4x2-x+4=0
\(\Leftrightarrow\)x2(x-4)-(x-4)=0
\(\Leftrightarrow\) (x2 -1)(x-4)=0
\(\Leftrightarrow\)(x-1)(x+1)(x-4)=0
\(\left[\begin{matrix}x+1=0\\x-1=0\\x-4=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=-1\\x=4\end{matrix}\right.\)
Vậy S=\(\left\{1;-1;4\right\}\)
3x2 + 2x - 1 = 0
<=> 3x2 + 3x - x - 1 = 0
<=> 3x(x + 1) - (x + 1) = 0
<=> (3x - 1)(x + 1) = 0
<=> \(\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\) Vậy S = {-1; 1/3}
Trả lời:
3x^2 +2x -1 =0
<=> 3x^2 +3x -x -1 =0
<=> ( 3x^2 +3x ) -( x +1 )=0
<=> 3x (x +1 ) - ( x +1 ) =0
<=>( 3x -1 ) ( x +1 ) =0
Đến đây bạn tự làm tiếp nhé
#Học tốt:))
Bạn đăng từng câu một thì sẽ có người giúp bạn đấy!
Tick cho mình nhé!
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
\(a)\) Ta có :
\(\left(x-1\right)^2\ge0\)
\(3x^2\ge0\)
\(\Rightarrow\)\(\left(x-1\right)^2+3x^2\ge0\)
Dấu "=" xảy ra tức là phương trình có nghiệm x khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\3x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=0\end{cases}}}\)
Vậy phương trình có nghiệm \(x=0\) và \(x=1\)
Đề sai nhé
\(b)\) Ta có :
\(x^2+2x+3\)
\(=\)\(\left(x^2+2x+1\right)+2\)
\(=\)\(\left(x+1\right)^2+2\ge2>0\)
Vậy đa thức \(x^2+2x+3\) vô nghiệm
Em mới lớp 7 có gì sai anh thông cảm nhé
Thực ra 2 câu đầu rất dễ nha bạn ^^!
1) x4 + 2x3 + x2 + 2x + 1 =0 <=> x3(x+2)+x(x+2)+1 = 0
<=> (x3+x)(x+2) + 1=0
1>0
=> (x3+x)(x+2) + 1=0 <=> (x3+x)(x+2) = 0
<=>\(\orbr{\begin{cases}^{x^3+x=0}\\x+2=0\end{cases}}\)<=>\(\orbr{\begin{cases}^{x\left(x^2+1\right)=0}\\x=-2\end{cases}}\) <=>\(\orbr{\begin{cases}^{x=0}\\x=-2\end{cases}}\)
b)
x3+1=\(2\sqrt[3]{2x-1}\)
<=> x^3 - 1 = 2(\(\sqrt[3]{2x-1}\) -1)
<=> (x-1)(x2+x+1) = \(\frac{4\left(x-1\right)}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\)
<=> (x-1)[(x2+x+1) - \(\frac{1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\) ] =0
<=> x=1
\(\text{a) }3x+6=8x+3\)
\(\Leftrightarrow3x-8x=3-6\)
\(\Leftrightarrow-5x=-3\)
\(\Leftrightarrow x=\frac{-3}{-5}=\frac{3}{5}\)
\(\text{Câu b và câu c bạn ghi rõ lại giùm}\)
a, 8/x-8 + 11/x-11 = 9/x-9 + 10/ x-10
b, x/x-3 - x/x-5 = x/x-4 - x/x-6
c, 4/x^2-3x+2 - 3/2x^2-6x+1 +1 = 0
d, 1/x-1 + 2/ x-2 + 3/x-3 = 6/x-6
e, 2/2x+1 - 3/2x-1 = 4/4x^2-1
f, 2x/x+1 + 18/x^2+2x-3 = 2x-5 /x+3
g, 1/x-1 + 2x^2 -5/x^3 -1 = 4/ x^2 +x+1
\(x^4-2x^2-100x-624=0\\ \Rightarrow\left(x^4+4x^3\right)-\left(4x^3+16x^2\right)+\left(14x^2+56x\right)-\left(156x-624\right)=0\\ \Rightarrow x^3\left(x+4\right)-4x^2\left(x+4\right)+14x\left(x+4\right)-156\left(x+4\right)=0\\ \Rightarrow\left(x^3-4x^2+14x-156\right)\left(x+4\right)=0\\ \Rightarrow\left[\left(x^3-6x^2\right)+\left(2x^2-12x\right)+\left(26x-156\right)\right]\left(x+4\right)=0\\ \Rightarrow\left[x^2\left(x-6\right)+2x\left(x-6\right)+26\left(x-6\right)\right]\left(x+4\right)=0\)
\(\Rightarrow\left(x^2+2x+26\right)\left(x-6\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2+25=0\left(vô.lí\right)\\x=6\\x=-4\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{-4;6\right\}\)