Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
| x - 2 |.( x - 1 ).( x + 1 ).( x + 2 ) = 4
Bỏ dấu tuyệt đối => 2 TH xảy ra
TH1:| x - 2 |.( x - 1 ).( x + 1 ).( x + 2 ) = 4
<=>(x-2).(x-1).(x+1).(x+2)=4
<=> (x-2).(x+2).(x-1)(x+1)=4
<=> (x2- 4).(x2- 1)=4
<=>x4- x2 - 4x2 + 4 =4
<=> x4 - 5x2 +4-4=0
<=> x4 - 5x2= 0
<=>x2 ( x2 - 5 ) =0
<=> 2 TH
*x2=0=> x=0
*x2- 5 =0 => x2= \(\pm\sqrt{5}\)=> x=\(\sqrt{5}\) hoặc x=\(-\sqrt{5}\)
Vậy x=0 hoặc x=\(\sqrt{5}\); x=-\(\sqrt{5}\)
TH2:| x - 2 |.( x - 1 ).( x + 1 ).( x + 2 ) = 4
<=>(2-x).(x-1).(x+1).(x+2)=4 ( TH này là dấu - đằng trc)
<=>(2-x).(2+x).(x-1)(x+1)=4
<=>(4 - x2). (x2 - 1) =4
<=> 4x2 - 4 - x4 + x2 - 4 =0
<=> 5x2 - x4 - 8 =0
<=> 5x2 - x4 = 8
Đặt x2 = t
-t2+5t-8 = -(t2 - 5t + 8)
Ta có: (t2 - 5t + 8)
=t2 - 5t +\(\frac{25}{4}+\frac{7}{4}\)
=(t2 - 5t + \(\left(\frac{5}{2}\right)^2\)) + \(\frac{7}{4}\)
= (t+\(\frac{5}{2}\))2 + \(\frac{7}{4}\)
Vì: (t+\(\frac{5}{2}\))2 > 0 với mọi t
=> (t+\(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi t
=> t2 - 5t + 8 > 0 với mọi t
=>-(t2 - 5t + 8) < 0 với mọi t
=> o có gt nào tm t => PT vô nghiệm
Loại TH 2
Vậy \(\Leftrightarrow\hept{\begin{cases}x=0\\x=\sqrt{5};x=-\sqrt{5}\end{cases}}\)
+/ TH1: x>=2
PT <=> (x-2)(x-1)(x+1)(x+2)=4
<=> (x2-1)(x2-4)=4 <=> x4-x2-4x2+4=4 <=> x2(x2-5)=0 => \(\hept{\begin{cases}x=0\left(loại\right)\\x=-\sqrt{5}\left(loại\right)\\x=\sqrt{5}\end{cases}}\)
+/ TH2: x<2
PT <=> (2-x)(x-1)(x+1)(x+2)=4 <=> (x2-1)(4-x2)=4 <=> -x4+x2+4x2-4=4 <=> x4-5x2+8=0
<=> \(x^4-2.\frac{5}{2}x^2+\frac{25}{4}+\frac{7}{4}=0\)
<=> \(\left(x^2-\frac{5}{2}\right)^2+\frac{7}{4}=0\)
Nhận thấy: \(\left(x^2-\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)Với mọi x => PT vô nghiệm
Đáp số: \(x=\sqrt{5}\)
<=>|x-2|(x-1)(x+1)(x+2)=(x-1)(x+1)(x-2)(x+2)
=>|x-2|(x-1)(x+1)(x+2)=22
\(\Rightarrow x=\sqrt{5}\)
Đề ntn hả bạn: \(\frac{1}{x^2-x}\)+\(\frac{1}{x^2+x}\)+\(\frac{1}{x^2+3x}\)+ 2 = \(\frac{3}{4}\)?
\(\frac{x^2-4x+1}{x+1}+2=-\frac{x^2-5x+1}{2x+1}\)
Giải
\(ĐKXĐ:x\ne-1;x\ne-\frac{1}{2}\)
\(PT\Leftrightarrow\frac{x^2-4x+1}{x+1}+1+\frac{x^2-5x+1}{2x+1}+1=0\Leftrightarrow\frac{x^3-3x+2}{2x+1}=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{x+1}+\frac{1}{2x+1}\right)=0\Leftrightarrow\left(x^2-3x+2\right)\left(3x+2\right)=0\Leftrightarrow\) \(\left(x-1\right)\left(x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow x=1;x=2;x=-\frac{2}{3}\)
Cả 3 giá trị trên đều thỏa mãn ĐKXĐ nên :
Vậy PT đã cho có tập nghiệm \(S=\left\{1;2;-\frac{2}{3}\right\}\)
Chúc bạn học tốt !!!
dat x+1/x=k.Ta co: x2+1/x2=k2-2,thay vao phuong trinh ta duoc:k2-2-4k+6=0\(\Leftrightarrow\)k2-4k+4=0\(\Leftrightarrow\)(k-2)2=0\(\Leftrightarrow\)k-2=0\(\Leftrightarrow\)k=2.Suy ra:x+1/x=2\(\Leftrightarrow\)x2+1=2x\(\Leftrightarrow\)x2-2x+1=0\(\Leftrightarrow\)(x-1)2=0\(\Leftrightarrow\)x-1=0\(\Leftrightarrow\)x=1.Vay phuong trinh tren co nghiem la x=1
ta có :
\(\left|x+1\right|+\left|x-1\right|=1+\left|\left(x-1\right)\left(x+1\right)\right|\)
\(\Leftrightarrow\left|x-1\right|\left|x+1\right|-\left|x-1\right|-\left|x+1\right|+1=0\)
\(\Leftrightarrow\left(\left|x-1\right|-1\right)\left(\left|x+1\right|-1\right)=0\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=1\\\left|x+1\right|=1\end{cases}}\)
\(\Leftrightarrow x\in\left\{-2,0,2\right\}\)
(x + 1) ^ 2 + |x - 1| = x ^ 2 + 4
ó/x-1/=x^2+4-(x+1)^2
ó/x-1/=x^2+4-x^2-2x-1
ó/x-1/=-2x+3
Nếu x-1≥0 óx≥1 thì /x-1/=x-1
Ta có pt : x-1=-2x+3
óx+2x=3+1
ó3x=4
óx=4/3(t/m)
Nếu x-1 <0 óx<1 thì /x-1/=1-x
Ta có pt :1-x=-2x+3
ó-x+2x=3-1
óx=2(loại)
Vậy pt trình có nghiệm là x=4/3
bn oi "ó " là dấu khi và chỉ khi ("<=>") , do tải lên bị lỗi nên nó như zậy . sorry nhé !