K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

\(2x^2-7x-15=22.\)

\(\Leftrightarrow2x^2-7x-37=0.\)

\(\Leftrightarrow x^2-\frac{7}{2}x-\frac{37}{2}=0.\)

\(\Leftrightarrow x^2-2.\frac{7}{4}x+\frac{49}{16}-\frac{49}{16}-\frac{37}{2}=0.\)

\(\Leftrightarrow\left(x-\frac{7}{4}\right)^2=\frac{345}{16}.\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{4}=\frac{\sqrt{345}}{4}\\x-\frac{7}{4}=-\frac{\sqrt{345}}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{345}+7}{4}\\x=\frac{-\sqrt{345}+7}{4}\end{cases}}\)

Học tốt

23 tháng 4 2020

(2x+3)(x-5)=42+6

2x2-10x+3x-15x=16+6

2x2-7x-15=22

2x2-7x-15-22=0

2x2-7x-37=0

\( {7 \pm\sqrt{345} \over 2}\)\(+{7 - \sqrt{345} \over 2}\)=0

x1=-2,89354  

x2=6,39354

neu co sai cho to xin loi 

chuc ban hoc tot

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

\(a,x+\frac{4}{5}-x+4=\frac{x}{3}-x-1\)

\(x+\frac{24}{5}-x=\frac{x}{3}-x-1\)

\(x+\frac{24}{5}-x-\frac{x}{3}+x+1=0\)

\(x+\frac{29}{5}-\frac{x}{3}=0\)

\(x-\frac{1}{3}x=-\frac{29}{5}\)

\(\frac{2}{3}x=-\frac{29}{5}\)

\(x=-\frac{87}{10}\)

9 tháng 4 2018

có ai giải cho đâu mà cảm ơn

9 tháng 4 2018

a, 3x-2=2x-3 <=> 3x-2x=-3+2 <=> x=-1

b, 2x+3=5x+9 <=> 5x-2x=3-9 <=> 3x=-6 <=> x=-2

c, 5-2x=7 <=> 2x=5-7 <=> 2x=-2 <=> x=-1

d, x(x+2)=x(x+3) <=> x^2 + 2x = x^2 + 3x <=> 3x-2x=0 <=> x=0

e, 

18 tháng 3 2020

\(\Leftrightarrow\frac{6x^2+3}{24}-\frac{10x-4}{24}=\frac{6x^2-6}{24}-\frac{4x-12}{24}\)

\(\Leftrightarrow\frac{6x^2+3-10x+4}{24}=\frac{6x^2-6-4x+12}{24}\)

\(\Leftrightarrow6x^2-10x+7=6x^2-4x+6\)

\(\Leftrightarrow-6x+1=0\)

\(\Rightarrow-6x=-1\)

\(\Leftrightarrow x=\frac{1}{6}\)

Vậy ...

3 tháng 5 2021

a, \(x^2-8x+16=81\Leftrightarrow x^2-8x-65=0\)

\(\Leftrightarrow\left(x-13\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=13\)

Vậy tập nghiệm của pt là S = { -5 ; 13 } 

b, \(\frac{2x+2}{5}+\frac{3}{10}< \frac{3x-2}{4}\)

\(\Leftrightarrow\frac{8x+8+6}{20}< \frac{15x-10}{20}\Leftrightarrow8x+14< 15x-10\)

\(\Leftrightarrow-7x< -24\Leftrightarrow x>\frac{24}{7}\)

Vậy tập nghiệm của BFT là S = { x | x > 24/7 } 

c, \(\frac{2}{x-2}+\frac{3}{x-3}=\frac{3x-20}{x^2}\)ĐK : \(x\ne0;2;3\)

\(\Leftrightarrow\frac{2x^2\left(x-3\right)+3x^2\left(x-2\right)}{x^2\left(x-2\right)\left(x-3\right)}=\frac{\left(3x-20\right)\left(x-2\right)\left(x-3\right)}{x^2\left(x-2\right)\left(x-3\right)}\)

tự khử mẫu, làm tiếp nhé, mình bị lười :>

3 tháng 5 2021

d, \(3\left(x-11\right)-2\left(x+11\right)=1964\)

\(\Leftrightarrow3x-33-2x-22=1964\Leftrightarrow x-55=1964\Leftrightarrow x=2019\)

Vâỵ tập nghiệm của pt là S = { 2019 } 

e, \(\left|2x-3\right|=5\)

Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=5\Leftrightarrow x=4\)( tm )

Với \(x< \frac{3}{2}\)pt có dạng : \(-2x+3=5\Leftrightarrow-2x=2\Leftrightarrow x=-1\)( tm )

Vậy tập nghiệm của pt là S = { -1; 4 } 

g, \(\frac{-2x+14}{x-5}+\frac{5x-3}{2x}=\frac{8}{x\left(x-5\right)}\)ĐK : \(x\ne0;5\)

\(\Leftrightarrow\frac{2x\left(-2x+14\right)+\left(5x-3\right)\left(x-5\right)}{2x\left(x-5\right)}=\frac{16}{2x\left(x-5\right)}\)

Tự khử mẫu tự giải nhá :> 

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

27 tháng 1 2021

a, \(3x+2\left(x-5\right)=6-\left(5x-1\right)\)

\(\Leftrightarrow3x+2x-10=6-5x+1\)

\(\Leftrightarrow-15\ne0\)Vậy phương trình vô nghiệm 

b, \(x^3-3x^2-x+3=0\)

\(\Leftrightarrow x\left(x^2-1\right)-3\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow x=3;\pm1\)

Vậy tập nghiệm của phương trình là S = { 1 ; -1 ; 3 }

27 tháng 1 2021

c, \(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}ĐK:x\ne\pm3\)

\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow x+3+x^2-3x-2=0\)

\(\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)thỏa mãn 

Vậy ... 

Đặt PT đã cho là X

* Với \(x\ge-1\)thì\(x+1\ge0\) nên \(|x+1|=x+1\)

     và \(x\ge5\)thì \(5-x\ge0\)nên \(|5-x|=5-x\)

Do đó X trở thành: \(x+1+5-x=-2x^2+16x-26\)

\(\Leftrightarrow x+2x^2-16x+x=-26-5-1\)

\(\Leftrightarrow2x^2-14x=-32\)

\(\Leftrightarrow2x^2-14x+32=0\)

tiếp tục giải....

* Với   \(x< -1\)thì\(x+1< 0\)nên\(|x+1|=-x-1\)

       và \(x< 5\)thì \(5-x< 0\)nên \(|5-x|=x-5\)

Do đó X trở thành: \(-x-1+x-5=-2x^2+16x-26\)

\(\Leftrightarrow-6=-2x^2+16x-26\)

\(\Leftrightarrow2x^2-16x=-26+6\)

\(\Leftrightarrow2x^2-16x=-20\)

\(\Leftrightarrow2x^2-16x+20=0\)

Tiếp tục giải

23 tháng 4 2020

\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow\frac{x-2}{x+2}+\frac{3}{x-2}-\frac{x^2-11}{x^2-4}=0\)

<=> \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}+\frac{3x+6}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{x^2-4x+4+3x+6-x^2+11}{\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{-x+21}{\left(x-2\right)\left(x+2\right)}=0\)

=> -x+21=0

<=> -x=-21

<=> x=21 (tmđk)

Vậy x=21 là nghiệm của pt

23 tháng 4 2020

\(\frac{x}{2x-6}-\frac{2}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne-1;x\ne3\right)\)

<=> \(\frac{x}{2x-6}-\frac{2}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

<=> \(\frac{x}{2\left(x-3\right)}-\frac{2}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

<=> \(\frac{\left(x+1\right)^2}{2\left(x+1\right)\left(x-3\right)}-\frac{2\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{\left(x+1\right)\left(x-3\right)2}=0\)

<=> \(\frac{x^2+2x+1}{2\left(x+1\right)\left(x-3\right)}-\frac{2x-6}{2\left(x+1\right)\left(x-3\right)}-\frac{4x}{2\left(x+1\right)\left(x-3\right)}=0\)

<=> \(\frac{x^2+2x+1-2x-6-4x}{2\left(x+1\right)\left(x-3\right)}=0\)

<=> \(\frac{x^2-4x-5}{2\left(x+1\right)\left(x-3\right)}=0\)

=> x2-4x-5=0

<=> x2-5x+x-5=0

<=> x(x-5)+(x-5)=0

<=> (x-5)(x+1)=0

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)

Đối chiếu điều kiện => x=5

Vậy x=5 là nghiệm của pt