Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{9\left(X+9\right)\left(X+9\right)\left(X+10\right)+10\left(X+10\right)\left(X+10\right)\left(X+9\right)}{90\left(X+10\right)\left(X+9\right)}=\frac{9.90\left(X+9\right)+10.90\left(X+10\right)}{90\left(X+10\right)\left(X+9\right)}\)
\(\Rightarrow9\left(X+9\right)^2\left(X+10\right)+10\left(X+10\right)^2\left(X+9\right)=810\left(X+9\right)+900\left(X+10\right)\)
\(\Leftrightarrow\left(9X+90\right)\left(X^2+18X+81\right)+\left(10X+90\right)\left(X^2+20X+100\right)=810X+7290+900X+9000\)
\(\Leftrightarrow\)9X3+162X2+729X+90X2+1620X+7290+10X3+200X2+1000X+90X2+1800X+9000=1710X+16290
\(\Leftrightarrow\)19X3+542X2+5149X+16290=1710X+16290
\(\Leftrightarrow\)19X3+542X2=16290-16290+1710X-5149X
\(\Leftrightarrow\)19X3+542X2=-3439X
\(\Leftrightarrow\)19X3+542X2+3439X=0
RỒI GIẢI TIẾP
\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x\pm2=0\\x^2-10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x^2=10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=\left|\sqrt{10}\right|\end{cases}}\) (cho x + 2 và x - 2 mình gộp chung cho gọn,bạn làm nhớ tách ra nhé)
\(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128=0\)
\(\Leftrightarrow x\left(x+10\right)\left(x+4\right)\left(x+6\right)+128=0\)
\(\Leftrightarrow\left(x^2+10x\right)\left(x^2+10x+24\right)+128=0\)
Đặt \(x^2+10x+12=t\)
\(\Rightarrow\left(t-12\right)\left(t+12\right)+128=0\)
\(\Leftrightarrow t^2-144+128=0\)\(\Leftrightarrow t^2-16=0\)
\(\Leftrightarrow\left(t-4\right)\left(t+4\right)=0\)\(\Leftrightarrow\left(x^2+10x+12-4\right)\left(x^2+10x+12+4\right)=0\)
\(\Leftrightarrow\left(x^2+10x+8\right)\left(x^2+10x+16\right)=0\)
\(\Leftrightarrow\left(x^2+10x+8\right)\left(x+2\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-8;-2\right\}\)
Ta có : \(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128=0\)
\(\Leftrightarrow\left(x^2+10x\right)\left(x^2+10x+24\right)+128=0\) (2)
Đặt \(x^2+10x=t\) Khi đó pt (2) có dạng :
\(t\cdot\left(t+24\right)+128=0\)
\(\Leftrightarrow t^2+24t+128=0\)
\(\Leftrightarrow\left(t+12\right)^2-16=0\)
\(\Leftrightarrow\left(t+12-4\right)\left(t+12+4\right)=0\)
\(\Leftrightarrow\left(t+8\right)\left(t+16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+8=0\\t+16=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}t=-8\\t=-16\end{cases}}\)
+) Với \(t=-8\) thì \(x^2+10x=-8\)
\(\Leftrightarrow\left(x+5\right)^2=17\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=\sqrt{17}\\x+5=-\sqrt{17}\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-5+\sqrt{17}\\x=-5-\sqrt{17}\end{cases}}\) ( thỏa mãn )
+) Với \(t=-16\) thì \(x^2+10x=-16\)
\(\Leftrightarrow\left(x+5\right)^2-9=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+14\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+14=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-14\end{cases}}\) ( thỏa mãn )
Vậy : phương trình đã cho có tập nghiệm \(S=\left\{-5\pm\sqrt{17},4,-14\right\}\)
<=> (m-5)x = 10 - 4m2
TH1: m - 5 = 0 <=> m = 5
Thay m = 5, ta có :
0x = 10 - 4.52
<=> 0x = -90 (vô lí)
Vậy với m =5, phương trình vô nghiệm
TH2: m-5 \(\ne\)0 <=> \(m\ne5\)
Phương trình có nghiệm duy nhất : \(x=\frac{10-4m^2}{m-5}\)
x+10=10+x
<=>x-x=10-10
<=>0=0
=>PT vô nghiệm
x-x=10-10
0=0
S=0