Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(2x^2+3x+2\)
\(\Leftrightarrow\) \(\left(x^2+2x+1^2\right)+\left(x^2+x+1^2\right)\)
\(\Leftrightarrow\) \(\left(x^2+2.x.1+1^2\right)\) + \(\left(x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(\Leftrightarrow\) \(\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+1\right)^2\ge0và\left(x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\) \(\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy \(2x^2+3x+2>0\left(\forall_x\right)\)
a)
\(2x^2+3x+2=\left(x^2+2x+1\right)+\left(x^2+2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\\ =\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
(vì >3/4 nên >0)
10.
\((x^2-2x-3)(x^2+10x+21)=25\)
\(\Leftrightarrow (x-3)(x+1)(x+3)(x+7)=25\)
\(\Leftrightarrow [(x-3)(x+7)][(x+1)(x+3)]=25\)
\(\Leftrightarrow (x^2+4x-21)(x^2+4x+3)=25\)
Đặt \(x^2+4x-21=a\) thì pt trở thành:
\(a(a+24)=25\)
\(\Leftrightarrow a^2+24a-25=0\)
\(\Leftrightarrow (a-1)(a+25)=0\Rightarrow \left[\begin{matrix} a=1\\ a=-25\end{matrix}\right.\)
Nếu \(a=x^2+4x-21=1\Leftrightarrow x^2+4x-22=0\)
\(\Leftrightarrow (x+2)^2=26\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\) (t/m)
Nếu \(a=x^2+4x-21=-25\Leftrightarrow x^2+4x+4=0\Leftrightarrow (x+2)^2=0\Rightarrow x=-2\) (t/m)
Vậy \(x\in \left\{-2\pm \sqrt{26}; -2\right\}\)
11.
\(x^4-4x^3+10x^2+37x-14=0\)
\(\Leftrightarrow (x^4-4x^3+4x^2)+6x^2+37x-14=0\)
\(\Leftrightarrow x^4+2x^3-(6x^3+12x^2)+(22x^2+44x)-(7x+14)=0\)
\(\Leftrightarrow x^3(x+2)-6x^2(x+2)+22x(x+2)-7(x+2)=0\)
\((x+2)(x^3-6x^2+22x-7)=0\)
\(\Rightarrow \left[\begin{matrix} x+2=0\\ x^3-6x^2+22x-7=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x^3-6x^2+22x-7=0(*)\end{matrix}\right.\)
Đối với pt $(*)$ (ta sử dụng pp Cardano)
\(\Leftrightarrow (x^3-6x^2+12x-8)+10x+1=0\)
\(\Leftrightarrow (x-2)^3+10(x-2)+21=0\)
Đặt \(x-2=a-\frac{10}{3a}\) thì PT trở thành:
\((a-\frac{10}{3a})^3+10(a-\frac{10}{3a})+21=0\)
\(\Leftrightarrow a^3-\frac{1000}{27a^3}+21=0\)
\(\Leftrightarrow 27a^6+576a^3-1000=0\). Đặt \(a^3=t\) thì:
\(27t^2+576t-1000=0\)
\(\Rightarrow 27(t^2+\frac{64}{3}t+\frac{32^2}{3^2})=4072\)
\(\Leftrightarrow 27(t+\frac{32}{3})^2=4072\Rightarrow t=\pm\sqrt{\frac{4072}{27}}-\frac{32}{3}\)
\(\Rightarrow a=\sqrt[3]{\pm \sqrt{\frac{4072}{27}}-\frac{32}{3}}\)
\(x=2+a-\frac{10}{3a}\) với giá trị $a$ như trên.
P/s: Bài này mình thấy có vẻ không phù hợp với lớp 8.
Ta có : \(\left(x+9\right)\left(x+10\right)\left(x+11\right)\left(x+12\right)=170\)
\(\Leftrightarrow\left[\left(x+9\right)\left(x+12\right)\right]\left[\left(x+10\right)\left(x+11\right)\right]=170\)
\(\Leftrightarrow\left(x^2+21x+108\right)\left(x^2+21x+110\right)=170\)
Đặt \(x^2+21x+109=a\).Khi đó , PT tương đương với :
\(\left(a-1\right)\left(a+1\right)=170\)
\(\Leftrightarrow a^2-1=170\)
\(\Leftrightarrow a^2=171\)
Chỗ này thì tớ nghĩ đề sai , 170 phải là 168
\(\left(x+9\right)\left(x+10\right)\left(x+11\right)\left(x+12\right)=170\)
\(\Leftrightarrow\left(x+9\right)\left(x+12\right)\left(x+10\right)\left(x+11\right)=170\)
\(\Leftrightarrow\left(x^2+21x+108\right)\left(x^2+21x+110\right)=170\)
Đặt \(x^2+21x+108=t\)
\(\Leftrightarrow t\left(t+2\right)=170\Leftrightarrow t^2+2t-170=0\)
\(\Leftrightarrow t=1\pm3\sqrt{19}\)đề sai ?
x = -15
1 đúng nhá
x = -15
1 đúng nhá