\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2015

Giải

Đặt A = \(\sqrt{x^2+11x-6}-3\sqrt{x+6}\)

      B = \(\sqrt{x^2+3x-2}-3\sqrt{x+2}\)

Theo bài ra ta có A + B = 4  (1)

Mặt khác ta có A2 - B2 = 8x + 32 - 24\(\sqrt{2x-1}\)(2)

Từ (1) ta có A = 4 - B thế vào (2) ta có 16 - 8B + B2 - B2 = 8x + 32 - 24\(\sqrt{2x-1}\)

Hay B + x + 2 - 3\(\sqrt{2x-1}\)= 0\(\Rightarrow\)\(\sqrt{x^2+3x-2}-3\sqrt{x+2}+x+2\) - \(3\sqrt{2x-1}\)\(\Rightarrow\)\(\sqrt{\left(x+2\right)\left(2x-1\right)}\) - \(3\sqrt{2x-1}+\sqrt{x+2}\left(\sqrt{x+2}-3\right)\)= 0

Hay \(\sqrt{2x-1}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}\left(\sqrt{x+2}-3\right)=0\)

\(\Rightarrow\left(\sqrt{x+2}-3\right)\left(\sqrt{2x-1}+\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\sqrt{x+2}-3=0\Leftrightarrow x=7\)

Thử lại x = 7 thỏa mã bài ra. Vậy nghiệm của phương trình la x = 7

10 tháng 1 2015

câu trả lời hay đấy ,còn cách giải khác không ,giải cho mình nốt các bài còn lại đi

NV
11 tháng 12 2018

Ta có

\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)

\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)

Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)

\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

NV
9 tháng 9 2020

ĐKXĐ: ...

\(\Leftrightarrow3\left(2\sqrt{x+2}+\sqrt{3-x}\right)=3x+1+4\sqrt{-x^2+x+6}\)

Đặt \(2\sqrt{x+2}+\sqrt{3-x}=t>0\)

\(\Rightarrow t^2=4\left(x+2\right)+3-x+4\sqrt{\left(x+2\right)\left(3-x\right)}=3x+11+4\sqrt{-x^2+x+6}\)

Pt trở thành:

\(3t=t^2-10\)

\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2\sqrt{x+2}+\sqrt{3-x}=5\)

Ta có: \(VT=2\sqrt{x+2}+\sqrt{3-x}\le\sqrt{\left(2^2+1^2\right)\left(x+2+3-x\right)}=5\)

\(\Rightarrow VT\le VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\frac{\sqrt{x+2}}{2}=\sqrt{3-x}\Leftrightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)