Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(pt\Leftrightarrow\sqrt{3x-2}-1+\sqrt{x+3}-2=x^3+3x-4\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{3x-2}+1}+\frac{1}{\sqrt{x+3}+2}-x^2-x-4\right)=0\)
\(\Leftrightarrow x=1\)
cái vế sau mk chưa giải bạn nghĩ nốt nhá
(1)Phương trình đã cho tương đương với:
√3x2−7x+3−√3x2−5x−1=√x2−2−√x2−3x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+4√3x2−7x+3+√3x2−5x−1=3x−6√x2−2+√x2−3x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤723≤x≤7
Phương trình đã cho tương đương với:
3x−18√3x−2+4+x−6√7−x−1+(x−6)(3x2+x−2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0
⇔(x−6)(3√3x−2+4+1√7−x−1+3x2+x−2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0
⇔x=6⇔x=6
vì với 23≤x≤723≤x≤7
thì: (3√3x−2+4+1√7−x−1+3x2+x−2)(33x−2+4+17−x−1+3x2+x−2)>0
\(DK:x\ge\sqrt[3]{\frac{2}{3}}\)
\(\Leftrightarrow\sqrt[3]{x^2-1}+\left(\sqrt{3x^3-2}-1\right)+\left(3-3x\right)=0\)
\(\Leftrightarrow\frac{x^2-1}{\sqrt[3]{\left(x^2-1\right)^2}}+\frac{3\left(x^3-1\right)}{\sqrt{3x^3-2}+1}-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{\sqrt[3]{\left(x^2-1\right)^2}}+\frac{3x^2+3x-3\sqrt{3x^3-2}}{\sqrt{3x^3-2}+1}\right)=0\)
Vi PT trong cai ngoac thu 2 >0
\(\Rightarrow x=1\left(n\right)\)
Vay nghiem cua PT la \(x=1\)
ĐK \(x\ge0\)
<=>\(\sqrt{2x+2}-\sqrt{x+3}=\sqrt{3x+1}-2\sqrt{x}\left(1\right)\)
Nhân liên hợp 2 vế ta có
\(\left(x-1\right)\left(\sqrt{3x+1}+2\sqrt{x}\right)=\left(1-x\right)\left(\sqrt{2x+2}+\sqrt{x+3}\right)\)
<=> \(\orbr{\begin{cases}x=1\left(tmĐKXĐ\right)\\\sqrt{3x+1}+2\sqrt{x}=-\left(\sqrt{2x+2}+\sqrt{x+3}\right)\left(2\right)\end{cases}}\)
Lấy (1)+(2)
=> \(2\sqrt{x}=-\sqrt{2x+2}\)vô nghiệm
Vậy x=1
Lưu ý :
Bài này có thể dùng cách bình phương 2 vế luôn nhưng sau đó ta thu được phương trình hệ quả khi giải ra cần thử lại vào phương trình ban đầu rồi mới kết luận nghiệm
\(\sqrt{2-x}=3-\sqrt{3x+1}\left(ĐK:-\frac{1}{3}\le x\le2\right)\)
\(\Leftrightarrow\sqrt{2-x}+\sqrt{3x+1}=3\)
\(\Leftrightarrow2-x+3x+1+2\sqrt{\left(2-x\right)\left(3x-1\right)}=9\)
\(\Leftrightarrow2\sqrt{\left(2-x\right)\left(3x+1\right)}=6-2x\)
\(\Leftrightarrow\sqrt{\left(2-x\right)\left(3x+1\right)}=3-x\left(ĐK:x\le3\right)\)
\(\Leftrightarrow\left(2-x\right)\left(3x+1\right)=9-6x+x^2\)
\(\Leftrightarrow6x+2-3x^2-x=9-6x+x^2\)
\(\Leftrightarrow4x^2-1x+7=0\)
\(\Leftrightarrow\left(4x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{4}\left(t/m\right)\\x=1\left(t/m\right)\end{cases}}\)
Vậy pt đã cho có nghiệm \(S=\left\{\frac{7}{4};1\right\}\)
Chúc bạn học tốt !!!