K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(\frac{1}{x-1}+\frac{1}{x-4}\right)-\left(\frac{1}{x-2}+\frac{1}{x-3}\right)=0\)

\(\Leftrightarrow\frac{x-4+x-1}{\left(x-1\right).\left(x-4\right)}-\frac{x-3-x-2}{\left(x-2\right).\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{2x-5}{x^2-5x+4}-\frac{2x-5}{x^2-5x+6}=0\)

\(\Leftrightarrow\left(2x-5\right).\left(\frac{1}{x^2-5x+4}-\frac{1}{x^2-5x+6}=0\right)\)

\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\\frac{1}{x^2-5x+4}-\frac{1}{x^2-5x+6}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x^2-5x+4=x^2-5x+6\left(loai\right)\end{cases}}}\)

Vậy..

5 tháng 3 2016

a)\(\Leftrightarrow-\frac{x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}=-\frac{3x^2}{x+1}+\frac{3x}{x+1}+3x\)

\(\Rightarrow\frac{3x^2}{x+1}-\frac{4x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}-3x+\frac{1}{x-1}=0\)

\(\Leftrightarrow-\frac{2x\left(3x-5\right)}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Rightarrow\int^{\frac{x-1}{1}=0}_{\frac{x+1}{1}=0}\Rightarrow x=0\)

=>3x=5

\(\Rightarrow x=\frac{3}{5}\)

vậy \(x=\frac{3}{5}\) hoặc 0 

b)x = -(20309916*i+23555105)/9277755;

x = -(985155752*i-35635815)/916564140;

x = (985155752*i+35635815)/916564140;

x = (20309916*i-23555105)/9277755;

c)\(\Leftrightarrow\frac{x+2}{x-1}=\frac{1}{1}\Rightarrow\left(x+2\right)1=\left(x-1\right)1\)

vì \(\left(x+2\right)1\ne\left(x-1\right)1\)

=>x vô nghiệm hoặc đề sai

5 tháng 3 2016

x=1+2+3=6 hê

15 tháng 2 2016

ĐK: x khác -1 và x khác 1.

\(PT\Leftrightarrow\frac{7x.\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{5x.\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x+21}{\left(x-1\right)\left(x+1\right)}=0\)

<=> 7x2 + 7x - 5x2 + 5x + x + 21 = 0

<=> 2x+ 13x + 21 = 0

<=> 2x2 + 6x + 7x + 21 = 0

<=> 2x.(x + 3) + 7.(x + 3) = 0

<=> (x + 3).(2x + 7) = 0

<=> x + 3 = 0 hoặc 2x + 7 = 0

<=> x = -3 hoặc x = -7/2

Vậy S = {-7/2; -3}.

29 tháng 1 2020

\(ĐKXĐ:x\ne2;x\ne4\)

\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=3\frac{1}{5}\)

\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)-\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=\frac{16}{5}\)

\(\Rightarrow\frac{x^2-7x+12-x^2+4x-4}{x^2-6x+8}=\frac{16}{5}\)

\(\Rightarrow\frac{-3x+8}{x^2-6x+8}=\frac{16}{5}\)

\(\Rightarrow-3x+8=\frac{16}{5}\left(x^2-6x+8\right)\)

\(\Rightarrow-3x+8=\frac{16}{5}x^2-\frac{96}{5}x+\frac{128}{5}\)

\(\Rightarrow\frac{16}{5}x^2-\frac{81}{5}x+\frac{88}{5}=0\)

Ta có \(\Delta=\frac{81^2}{5^2}-4.\frac{16}{5}.\frac{88}{5}=\frac{929}{25},\sqrt{\Delta}=\frac{\sqrt{929}}{5}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{81+\sqrt{929}}{32}\\x=\frac{81-\sqrt{929}}{32}\end{cases}}\)

23 tháng 3 2019

a) \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3x-24}\) \(ĐK:x\ne8\)

\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3\left(x-8\right)}\)

\(\Leftrightarrow\frac{3.3}{6.\left(x-8\right)}+\frac{6.\left(3x-20\right)}{6\left(x-8\right)}-\frac{2\left(3x-102\right)}{6\left(x-8\right)}=\frac{-1}{8}\)

\(\Leftrightarrow\frac{9+18x-120-6x+204}{6\left(x-8\right)}=\frac{-1}{8}\)

\(\Leftrightarrow\frac{12x+93}{6\left(x-8\right)}=\frac{-1}{8}\)

\(\Leftrightarrow8\left(12x+93\right)=-6\left(x-8\right)\)

\(\Leftrightarrow96x+744=-6x+48\)

\(\Leftrightarrow102x=-696\)

\(\Leftrightarrow x=\frac{-116}{17}\) (nhận)

Vậy .....

b) \(\frac{1}{3-x}+\frac{14}{x^2-9}=\frac{x-4}{3+x}+\frac{7}{3+x}\) \(ĐK:x\ne\pm3\)

\(\Leftrightarrow\frac{1}{3-x}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{x-4}{3+x}+\frac{7}{3+x}\)

\(\Leftrightarrow-\frac{3+x}{\left(x-3\right)\left(3+x\right)}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{-3-x+14}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)

\(\Leftrightarrow-3-x+14=x^2-3x-4x+12+7x-21\)

\(\Leftrightarrow x=-5\) (nhận)

Vậy ....

12 tháng 6 2016

điều kiền x # 0

đặt \(t=x+\frac{1}{x};đk:t\ge2\)=>\(x^2+\frac{1}{x^2}=t^2-2\)

Ta được phương trình mới ẩn t :  \(t^2-2t-5=0\)

tự giải phương trình nhé. lấy nghiệm t>= 2 

26 tháng 1 2019

\(\frac{x-3}{11}+\frac{x+1}{3}=\frac{x+7}{9}-1\)

\(\Leftrightarrow\frac{9\left(x-3\right)}{99}+\frac{33\left(x+1\right)}{99}=\frac{11\left(x+7\right)}{99}-\frac{99}{99}\)

\(\Leftrightarrow\frac{9\left(x-3\right)+33\left(x+1\right)}{99}=\frac{11\left(x+7\right)-99}{99}\)

\(\Leftrightarrow9\left(x-3\right)+33\left(x+1\right)=11\left(x+7\right)-99\)

\(\Leftrightarrow9x-27+33x+33=11x+77-99\)

\(\Leftrightarrow42x+6=11x-22\Leftrightarrow42x-11x=-6-22\)

\(\Leftrightarrow31x=-28\Leftrightarrow x=-\frac{28}{31}\)

Vậy phương trình có tập nghiệm S={-28/31}