Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\sqrt{x^3+3x^2+2x}=x^2-x-4\)
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=\left(x^2-x-4\right)^2\)
\(\Leftrightarrow x^3+3x^2+2x=x^4-2x^3-7x^2+8x+16\)
\(\Leftrightarrow-\left(x^2-2\right)\left(x^2-3x-8\right)\)
<=>-(x2-2)=0 hoặc x2-3x-8=0
Đối chiếu với đk ta thấy \(x=-\frac{\sqrt{41}-3}{2};\frac{\sqrt{41}+3}{2}\)thỏa mãn
dk \(\hept{\begin{cases}x\left(3x+1\right)\ge0\\x\left(x-1\right)\ge0\end{cases}< =>\orbr{\begin{cases}x\ge1\\x\le\frac{-1}{3}\end{cases}}}\)
vì x khác 0 nên chia cả 2 vế cho \(\sqrt{x}\)ta được \(\sqrt{3x+1}-\sqrt{x-1}=2\sqrt{x}< =>\)\(\sqrt{x-1}+2\sqrt{x}-\sqrt{3x+1}=0< =>\)\(\sqrt{x-1}+\frac{4x-\left(3x+1\right)}{2\sqrt{x}+\sqrt{3x+1}}=0\)\(\sqrt{x-1}+\frac{x-1}{2\sqrt{x}+\sqrt{3x+1}}=0\)\(< =>\sqrt{x-1}\left(1+\frac{\sqrt{x-1}}{2\sqrt{x}+\sqrt{3x+1}}\right)=0< =>\sqrt{x-1}=0\) (vì biểu thức trong ngoặc luôn \(\ge1\)) <=> x-1= 0 <=> x=1 (thỏa mãn điều kiện)
Dùng liên hợp.
pt <=> \(\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(1+\sqrt{3}\right)\)
\(-3\left(x-1\right)\left(x-\sqrt{3}\right)\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}\right)\)
\(+2\left(x-1\right)\left(x-\sqrt{2}\right)\left(\sqrt{3}+1\right)\left(\sqrt{3}+\sqrt{2}\right)=3x-1\)
<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left[\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)-\left(x-1\right)\left(\sqrt{2}+\sqrt{3}\right)\right]\)
\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left[\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)-\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)\right]\)
\(=3x-1\)
<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(x+\sqrt{3}\right)\left(1-\sqrt{2}\right)\)
\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left(x+1\right)\left(\sqrt{2}-\sqrt{3}\right)=3x-1\)
<=> \(3-x^2-2\left(1-x^2\right)=3x-1\)
<=> \(x^2-3x+2=0\) phương trình bậc 2.
Em làm tiếp nhé!
\(\left(\sqrt{x^2+1}+x\right)^5=a;\left(\sqrt{x^2+1}-x\right)^5=b=>ab=1;\)\(\sqrt[5]{a}-\sqrt[5]{b}=2x< =>x=\frac{\sqrt[5]{a}-\sqrt[5]{b}}{2}\)(1)
(a-b)2 = (a+b)2-4ab = 1232 -4 = 125.121 => |a-b| = \(\sqrt{125.121}=55\sqrt{5}\)
với \(a\ge b< =>x\ge0\)ta có hệ \(\hept{\begin{cases}a-b=55\sqrt{5}\\a+b=123\end{cases}< =>\hept{\begin{cases}a=\frac{55\sqrt{5}+123}{2}\\b=\frac{123-55\sqrt{5}}{2}\end{cases}}}\)
thay vào (1) ta được x =\(\frac{\sqrt[5]{\frac{123+55\sqrt{5}}{2}}-\sqrt[5]{\frac{123-55\sqrt{5}}{2}}}{2}\)(thỏa mãn x\(\ge0\))
với a<b <=> x<0 ta có hệ \(\hept{\begin{cases}a-b=-55\sqrt{5}\\a+b=123\end{cases}< =>\hept{\begin{cases}a=\frac{123-55\sqrt{5}}{2}\\b=\frac{123+55\sqrt{5}}{2}\end{cases}}}\)
=> x= \(\frac{\sqrt[5]{\frac{123-55\sqrt{5}}{2}}-\sqrt[5]{\frac{123+55\sqrt{5}}{2}}}{2}\)(thỏa mãn x<0)