Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Casio:
a/ \(\Leftrightarrow\left(x^2-5x-2\right)\left(x^2-2x-2\right)=0\)
b/ \(\Leftrightarrow2\left(2x^2+3x+3\right)^2+6\left(x+\frac{2}{3}\right)^2+\frac{28}{3}=0\)
Vế trái luôn dương nên pt vô nghiệm
c/ Câu này đề sai, pt này ko thể tách ra được nên chắc chắn là ko giải được
d/ Câu này chắc đề cũng ko đúng: đặt \(2x-4=a\Rightarrow2x=a+4\)
\(\Rightarrow\left(a+5\right)\left(a+1\right)\left(a+2\right)\left(a+10\right)=100\)
\(\Leftrightarrow a\left(a^3+18a^2+97a+180\right)=0\)
Dù pt có nghiệm \(a=0\) nhưng pt bậc 3 đằng sau lại ko thể giải
e/ Câu này giống câu trên
\(\Leftrightarrow x\left(16x^3+16x^2-93x+12\right)=0\)
Pt bậc 3 phía sau ko giải được
lời giải
a)
\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)
\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)
\(\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)
\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)
c)Đkxđ: x≥0
x+√x>(2√x+3)(√x−1)
⇔x+√x>2x+√x−3
⇔x−3>0
⇔x>3. (tmđk).
a/ ĐKXĐ:...
\(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\left|\frac{x-2}{x-1}\right|-3=0\)
\(\Leftrightarrow\left|\frac{x-2}{x-1}\right|^2+2\left|\frac{x-2}{x-1}\right|-3=0\)
Đặt \(\left|\frac{x-2}{x-1}\right|=t\left(t\ge0\right)\)
\(\Rightarrow pt\Leftrightarrow t^2+2t-3=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
Ok tự giải nốt
b/ viết lại đề bài đi cậu
a) \(\left|2x-5m\right|=2x-3m\)
Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
Biện luận:
Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
Với m < 0 phương trình vô nghiệm.
b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
Biện luận:
Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).
Ta có biến đổi sau :
\(\left(2x-3\right)^2-19=\left(x-4\right)+\left(x+1\right)^2-19\)
\(=\left(\left(x-4\right)-\left(x+1\right)^2+4\left(x-4\right)\left(x+1\right)-19\right)\)
\(=25+4\left(x-4\right)\left(x+1\right)-19\)
\(=4\left(x-4\right)\left(x+1\right)+6\)
Vậy từ phương trình ban đầu ta có :
\(\Leftrightarrow2\left(x-4\right)^2\left(x+1\right)^2=4\left(x-4\right)\left(x+1\right)+6\)
\(\Leftrightarrow\left(x-4\right)^2\left(x+1\right)^2-2\left(x-4\right)\left(x+1\right)-3=0\)
\(\Leftrightarrow\left[\left(x-4\right)\left(x+1\right)+1\right]\left[\left(x-4\right)\left(x+1\right)-3\right]=0\)
\(\Leftrightarrow\left(x^2-3x-3\right)\left(x^2-3x-7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2-3x-3=0\\x^2-3x-7=0\end{array}\right.\)
\(\Leftrightarrow x\in\left\{\frac{3\pm\sqrt{21}}{2};\frac{3\pm\sqrt{37}}{2}\right\}\)