Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=2^x\left(t>0\right)\) thì phương trình trở thành
\(4t^2-2t.4-\left(t^4+2t^3\right)=0\)
Bây giờ coi 4=u là một ẩn của phương trình, còn t là số đã biết. Phương trình trở thành phương trình bậc 2 đối với ẩn u. Tính \(\Delta'\)
ta có :
\(\Delta'=\left(-t\right)^2+\left(t^4+2t^3\right)=\left(t^2+t\right)^2\)
Do đó :
\(\begin{cases}u=t-t\left(t+1\right)\\u=t+t\left(t+1\right)\end{cases}\) \(\Leftrightarrow\begin{cases}4=-t^2\\4=t^2+2t\end{cases}\) \(\Leftrightarrow t^2+2t-4=0\)
\(\Leftrightarrow\begin{cases}t=-1-\sqrt{5}\\t=-1+\sqrt{5}\end{cases}\)
Suy ra \(2^x=\sqrt{5}-1\Leftrightarrow x=\log_2\left(\sqrt{5}+1\right)\)
a) Điều kiện: \(\left\{{}\begin{matrix}4x+2>0\\x-1>0\\x>0\end{matrix}\right.\)
Hay là: \(x>1\)
Khi đó biến đổi pương trình như sau:
\(\ln\dfrac{4x+2}{x-1}=\ln x\)
\(\Leftrightarrow\dfrac{4x+2}{x-1}=x\)
\(\Leftrightarrow4x+2=x\left(x-1\right)\)
\(\Leftrightarrow x^2-5x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{5+\sqrt{33}}{2}\\x_2=\dfrac{5-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)
Vậy nghiệm của phương trình là: \(x=\dfrac{5+\sqrt{33}}{2}\)
b) Điều kiện: \(\left\{{}\begin{matrix}3x+1>0\\x>0\end{matrix}\right.\)
Hay là: \(x>0\)
Biến đổi phương trình như sau:
\(\log_2\left(3x+1\right)\log_3x-2\log_2\left(3x+1\right)=0\)
\(\Leftrightarrow\log_2\left(3x+1\right)\left(\log_3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\log_2\left(3x+1\right)=0\\\log_3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=2^0\\x=3^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=9\end{matrix}\right.\)
Vậy nghiệm là x = 9.
Đặt \(t=\log_2x\) ta có bất phương trình :
\(2t^3+5t^2+t-2\ge0\)
hay
\(\left(t+2\right)\left(2t^2+t-1\right)\ge0\)
Bất phương trình này có nghiệm -2\(\le t\)\(\le-1\) hoặc \(t\ge\frac{1}{2}\)
Suy ra nghiệm của bất phương trình là :
\(\frac{1}{4}\le x\)\(\le\frac{1}{2}\) hoặc \(x\ge\sqrt{2}\)
Đặt \(t=lgx\), viết lại phương trình ở dạng :
\(3^2+3t.3-\left(t^4+t^3-2t^2\right)=0\)
Coi 3=u là ẩn, giải phương trình bậc 2 theo ẩn u,
\(\Delta=\left(2t^2+t\right)^2\)
tìm được
\(\begin{cases}u=-t^2-2t\\u=t^2-t\end{cases}\) và \(\begin{cases}x=10^{\frac{1+\sqrt{13}}{2}}\\x=10^{\frac{1-\sqrt{13}}{2}}\end{cases}\)
\(\Leftrightarrow\frac{3^{\sin^2x}+3}{3^{\sin^2x}}-4=2^{2.\frac{x}{2}}+2^{2.\frac{-x}{2}}-2\)
\(\Leftrightarrow\frac{\left(3^{\sin^2x}-1\right)\left(3^{\sin^2x}-3\right)}{3^{\sin^2x}}=\left(2^{\frac{x}{2}}-2^{\frac{-x}{2}}\right)^2\)
Vì 0 \(\le\sin^2x\)\(\le1\) nên 1 \(\le3\sin^2x\)\(\le3\) . Suy ra Vế trái \(\le0\)\(\le\) vế phải và phương trình tương đương với hệ :
\(\begin{cases}\left(3^{\sin^2x}-1\right)\left(3^{\sin^2x}-3\right)=0\\2^{\frac{x}{2}}-2^{\frac{-x}{2}}=0\end{cases}\)
Từ phương trình thứ 2, dễ dàng suy ra x=0 (thỏa mãn). Vậy x=0 là nghiệm duy nhất của phương trình đã cho.
Nếu $x+2>2x+1$ thì $2^{x+2}>2^{2x+1},3^{x+2}>3^{2x+1}$ nên VT>VP.
Nếu $x+2<2x+1$ thì $2^{x+2}<2^{2x+1},3^{x+2}<3^{2x+1}$ nên VT<VP.
Vậy x+2=2x+1 hay x=1
Phương trình đã cho tương đương với phương trình
\(3^{x+2}-3^{x+2}=3^{2x+1}-2^{2x+1}\)
Dễ thấy \(x=1\) là nghiệm của phương trình
Nếu \(x>1\) thì \(x+2<2x+1\)
Do đó
\(3^{x+2}<3^{2x+1};3^{2x+1}>2^{x+2}\)
Hay vế trái <0< Vế phải, phương trình vô nghiệm
Tương tự, nếu x<1 thì phương trình cũng vô nghiệm
Vạy x=1 là nghiệm duy nhất của phương trình
8\(^x\)\(=\)9\(^x\)
\(\Leftrightarrow\)(\(\frac{8}{9}\))\(^x\)\(=\) 1
\(\Leftrightarrow\) x \(=0\)
Lấy Logarit cơ số 2 hai vế ta được phương trình tương đương
\(\log_22^{3^x}=\log_23^{2^x}\)
\(\Leftrightarrow3^x=2^x.\log_23^{ }\)
\(\Leftrightarrow\left(\frac{3}{2}\right)^x=\log_23\)
Do đó \(x=\log_{\frac{3}{2}}\log_23\) là nghiệm của phương trình