Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:\frac{2}{3}\ge x\ge\frac{5}{2}\)
\(PT\Leftrightarrow\left(4x^2-4x+1\right)+\left(2x-5\right)\sqrt{2+4x}-\left(2x+3\right)\sqrt{6-4x}+16=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\sqrt{2+4x}-\left(2x+3\right)\sqrt{6-4x}+16=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\left(\sqrt{2+4x}-2\right)-\left(2x+3\right)\left(\sqrt{6-4x}-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\frac{2+4x-4}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{6-4x-4}{\sqrt{6-4x}+2}=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\frac{2\left(2x-1\right)}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{-2\left(2x-1\right)}{\sqrt{6-4x}+2}=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-1+\left(2x-5\right)\frac{2}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{-2}{\sqrt{6-4x}+2}\right)=0\)
Theo ĐK ta chứng minh đc \(\left(2x-1+\left(2x-5\right)\frac{2}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{-2}{\sqrt{6-4x}+2}\right)>0\)
Do đó \(2x-1=0\Rightarrow x=\frac{1}{2}\left(TMĐKXĐ\right)\)
Phương pháp giải như sau :
Trước hết phải có ĐKXĐ là \(x>1\)
Biến đổi phương trình về dạng \(\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=3\left(\sqrt{2}+1\right)\) (1)
Áp dụng bất đẳng thức AM-GM Côsi cho 3 số ta có
\(VT=\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}+\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}+1}+4\left(x+1\right)\) \(\ge3\sqrt[3]{\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot4\left(x+1\right)}\)\(=3\sqrt[3]{5\sqrt{2}+7}=3\sqrt[3]{\left(\sqrt{2}+1\right)^3}=3\left(\sqrt{2}+1\right)=VP\)nên
(1) \(\Leftrightarrow\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}=4\left(x+1\right)\Leftrightarrow x=\frac{\sqrt{2}-3}{4}\)(tm)
Kết luận:... (Đây chỉ là hướng giải các bạn tự trình bày nhé, chúc học tốt)
ĐKXĐ: ...
\(\Leftrightarrow3\left(2\sqrt{x+2}+\sqrt{3-x}\right)=3x+1+4\sqrt{-x^2+x+6}\)
Đặt \(2\sqrt{x+2}+\sqrt{3-x}=t>0\)
\(\Rightarrow t^2=4\left(x+2\right)+3-x+4\sqrt{\left(x+2\right)\left(3-x\right)}=3x+11+4\sqrt{-x^2+x+6}\)
Pt trở thành:
\(3t=t^2-10\)
\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2\sqrt{x+2}+\sqrt{3-x}=5\)
Ta có: \(VT=2\sqrt{x+2}+\sqrt{3-x}\le\sqrt{\left(2^2+1^2\right)\left(x+2+3-x\right)}=5\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\frac{\sqrt{x+2}}{2}=\sqrt{3-x}\Leftrightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
\(\sqrt{12-\frac{3}{x^2}}=a\left(a\le\sqrt{12}\right);\sqrt{4x^2-\frac{3}{x^2}}=b\left(b\ge0\right)\)
ta có \(\hept{\begin{cases}a+b=4x^2\\b^2-a^2=4x^2-12\end{cases}}\)<=> \(\hept{\begin{cases}a+b=4x^2\\\left(b-a\right)\left(b+a\right)=4x^2-12\end{cases}< =>\hept{\begin{cases}a+b=4x^2\\b-a=\frac{4x^2-12}{4x^2}\end{cases}}}\)
<=> \(\hept{\begin{cases}b+a=4x^2\\b-a=1-\frac{3}{x^2}\end{cases}}< =>\hept{\begin{cases}b+a=4x^2\\2b=4x^2+1-\frac{3}{x^2}=b^2+1\end{cases}}\)<=> \(\hept{\begin{cases}b+a=4x^2\\\left(b-1\right)^2=0\end{cases}=>b=1}\)
=> 4x2-\(\frac{3}{x^2}=1=>4x^4-x^2-3=0< =>x^2=1\)=> x=1 hoặc x=-1
thay vào phương trình ban đầu đều thỏa mãn => pt có 2 nghiệm x=1; x=-1
\(\sqrt{\frac{4x+3}{x+1}}=3\\ \)
<=> 4x + 3 = 9(x + 1)
<=> x = \(\frac{-6}{5}\)
b. 2 + \(\sqrt{2x-1}=x\) ĐKXĐ: \(x\ge0,5\)
<=> \(\sqrt{2x-1}\) = x - 2
<=> 2x - 1 = (x - 2)2
<=> 2x - 1 = x2 - 4x + 4
<=> -x2 + 2x + 4x - 4 - 1 = 0
<=> -x2 + 6x - 5 = 0
<=> -x2 + 5x + x - 5 = 0
<=> -(-x2 + 5x + x - 5) = 0
<=> x2 - 5x - x + 5 = 0
<=> x(x - 5) - (x - 5) = 0
<=> (x - 1)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)