Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(16x^2-5=0\)
\(\Rightarrow16x^2=5\)
\(\Rightarrow x^2=\frac{5}{16}\)
\(\Rightarrow x=\sqrt{\frac{5}{16}}\Rightarrow x=\frac{\sqrt{5}}{4}\)
b, \(2\sqrt{x-3}=4\)
\(\Rightarrow\sqrt{x-3}=4:2\)
\(\Rightarrow\sqrt{x-3}=2\)
\(\Rightarrow x-3=4\)
\(\Rightarrow x=4+3\)
\(\Rightarrow x=7\)
c, \(\sqrt{4x^2-4x+1}=3\)
\(\Rightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Rightarrow2x-1=3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
d, \(\sqrt{x+3}\ge5\)
\(\Rightarrow x+3\ge25\)
\(\Rightarrow x\ge22\)
e, \(\sqrt{3x-1}< 2\)
\(\Rightarrow3x-1< 4\)
\(\Rightarrow3x< 5\)
\(\Rightarrow x< \frac{5}{3}\)
g, \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Rightarrow\sqrt{x-3}=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
a) \(16x^2-5=0\)
\(\Leftrightarrow16x^2=5\)
\(\Leftrightarrow x^2=\frac{5}{16}\)
\(\Leftrightarrow x=\pm\sqrt{\frac{5}{16}}\)
b) \(2\sqrt{x-3}=4\)
\(\Leftrightarrow\sqrt{x-3}=2\)
\(\Leftrightarrow x-3=4\)
\(\Leftrightarrow x=7\)
c) \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
d) \(\sqrt{x+3}\ge5\)
\(\Leftrightarrow x+3\ge25\)
\(\Leftrightarrow x\ge22\)
e) \(\sqrt{3x-1}< 2\)
\(\Leftrightarrow3x-1< 4\)
\(\Leftrightarrow3x< 5\)
\(\Leftrightarrow x< \frac{5}{3}\)
g) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
Vì \(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Leftrightarrow\sqrt{x-3}=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
a) b) c) bạn bình phương 2 vế
d) pt <=>3-x=x+3+2.căn(x+2)
<=> -2x=2.căn (x+2)
<=>-x=căn (x+2) (x<=0)
<=> x^2=x+2
<=>x=-1 hoặc x=2
Xong bạn xét ĐKXĐ
đk \(x\ge2\)
pt<=> \(x^2-2x+5=x^2-4x+4\)( vì bình phương 2 vế ko âm )
<=> \(2x=-1\)
<=> \(x=-\frac{1}{2}\left(ktm\right)\)
vậy pt vô nghiệm
\(x^2+9x+20=2\sqrt{3x+10}\\ \)
\(x^2+6x+9+3x+10-2\sqrt{3x+10}+1=0\\ \)
\(\left(x+3\right)^2+\left(\sqrt{3x+10}-1\right)^2=0\\ \)
=> \(\hept{\begin{cases}x+3=0\\3x+9=0\end{cases}=>x=-3}\)
Giải kiểu này nhanh gọn hơn.
Giải:
Ta có:
\(x^2+9x+20=2\sqrt{3x+10}\)
\(\Leftrightarrow\sqrt{3x+10}-1^2+x+3^2=0\)
\(\Leftrightarrow x=-3\)
\(a,|x+3|=3x-1\)
+) với:\(x\ge-3\Rightarrow x+3\ge0\Rightarrow|x+3|=x+3\)
\(\Rightarrow3x-1=x+3\Rightarrow3x=x+4\Rightarrow x=2\left(\text{ thỏa mãn}\right)\)
+) với: \(x< -3\Rightarrow x+3< 0\Rightarrow|x+3|=-3-x\)
\(\Rightarrow-3-x=3x-1\Rightarrow-x=3x+2\Rightarrow4x+2=0\Rightarrow x=-\frac{1}{2}\left(\text{loại}\right)\)
Vậy: x=2
Dễ thấy, nếu x < 0:
\(VT=\sqrt{x^2+5}+3x< 3x+\sqrt{x^2+5}\)
Phương trình vô nghiệm. Vậy: \(x\ge0\)
Phương trình ban đầu tương đương:
\(\sqrt{x^2+12}+5-3x\sqrt{x^2+5}=0\)
\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+5}-\frac{x^2-4}{3x+\sqrt{x^2+5}}+3.x-2=0\)
\(\Leftrightarrow x-2.\frac{x+2}{\sqrt{x^2+12}+5}-\frac{x+2}{3x.\sqrt{x^2+5}}+3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\frac{x+2}{\sqrt{x^2+12}+5}-\frac{x+2}{3x+\sqrt{x^2+5}}+3=0\end{cases}}\)
Ta có:
\(2\Leftrightarrow x+2.\frac{1}{\sqrt{x^2+12}+5}-\frac{1}{3x+\sqrt{x^2+5}}+3=0\)
\(\Leftrightarrow x+2.\frac{\sqrt{x^2+12}-3x+\sqrt{x^2+5}}{\sqrt{x^2+12}+5.3x\sqrt{x^2+5}}=0\)
Do x > 0 nên \(VT>0=VF\). Do đó phương trình 2 vô nghiệm
Vậy: Phương trình ban đầu có nghiệm duy nhất \(x=2\)
P/s: Bn tham khảo nhé