Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+3\right)\left(4-3x\right)+\left(x^2+6x+9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(4-3x\right)+\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(4-3x\right)+\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(4-3x+x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(7-2x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\7-2x=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=\frac{7}{2}\end{array}\right.\)
Vậy phương trình có tập nghiệm là \(\left\{-3;\frac{7}{2}\right\}\)
(x+3)(4-3x)+(x2+6x+9)=0
(x+3)(4-3x)+(x+3)2=0
(x+3)(4-3x)+(x+3)(x+3)=0
(x+3)(4-3x+x+3)=0
(x+3)(7-2x)=0
\(\Rightarrow\left[\begin{array}{nghiempt}x+3=0\\7-2x=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=-3\\2x=7\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=-3\\x=\frac{7}{2}\end{array}\right.\)
Vậy x=3;\(\frac{7}{2}\)
a)(2x+1)(3x-2)=(5x-8)(2x+1)
⇔(2x+1)(3x-2)-(5x-8)(2x+1)=0
⇔(2x+1)(3x-2-5x+8)=0
⇔(2x+1)(-2x+6)=0
⇔2x+1=0 hoặc -2x+6=0
1.2x+1=0⇔2x=-1⇔x=-1/2
2.-2x+6=0⇔-2x=-6⇔x=3
phương trình có 2 nghiệm x=-1/2 và x=3
\(x^5+y^5-\left(x+y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
a) \(\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)
\(\Leftrightarrow-\left(3x-2\right)\left(x+11\right)-\left(3x-2\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(-x-11-2+5x\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(4x-13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{13}{4}\end{cases}}\)
b) \(\left(2x-5\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(2x-5-x-2\right)\left(2x-5+x+2\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Lập bảng xét dấu là ra bạn nhé
Nếu bạn chưa hiểu cách làm bài tập về bảng xét dấu thì tra google hay coi youtube nhé
chúc bạn thành công
a)\(\left(x^2+1\right)\left(x^2-4x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(vn\right)\\\left(x-2\right)^2=0\end{cases}\Rightarrow}x=2}\)
b)\(\left(3x-2\right)\left(\frac{2x+6}{7}-\frac{4x-3}{5}\right)=0\\ \Rightarrow\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(\frac{-18x+51}{35}\right)=0\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)
c)\(\left(3,3-11x\right)\left(\frac{21x+6+10-30x}{15}\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{16}{9}\end{cases}}\)
\(\frac{\left|3-2x\right|-\left|x\right|}{\left|2+3x\right|+x-2}=5\) ( ĐKXĐ : \(\begin{cases}x\ne0\\x\ne-2\end{cases}\) )
\(\Rightarrow\left|3-2x\right|-\left|x\right|-5.\left|2+3x\right|-5x=-10\left(1\right)\)
+ ) Với \(x< -\frac{2}{3}\)
\(\left(1\right)\Leftrightarrow\left(3-2x\right)+x+5\left(2+3x\right)-5x=-10\)
\(\Leftrightarrow x=-\frac{23}{9}\) ( nhận )
+ ) Với \(-\frac{2}{3}\le x< 0\)
\(\left(1\right)\Leftrightarrow\left(3-2x\right)+x-5\left(2+3x\right)-5x=-10\)
\(\Leftrightarrow x=\frac{1}{7}\) ( loại )
+) Với \(0\le x< \frac{3}{2}\)
\(\left(1\right)\Leftrightarrow\left(3-2x\right)-x-5\left(2+3x\right)-5x=-10\)
\(\Leftrightarrow x=\frac{3}{23}\) ( chọn )
+ ) Với \(\frac{3}{2}\le x\)
\(\left(1\right)\Leftrightarrow\left(2x-3\right)-x-5\left(2+3x\right)-5x=-10\)
\(\Leftrightarrow x=-\frac{3}{19}\) ( loại )
Vậy ........................
Điều kiện xác định : \(x\ne0,x\ne-2\)
\(\frac{\left|3-2x\right|-\left|x\right|}{\left|2+3x\right|+x-2}=5\)
\(\Leftrightarrow\left|2x-3\right|-\left|x\right|=5\left|3x+2\right|+5x-10\)
Xét các trường hợp :
1. Nếu \(x\ge\frac{3}{2}\) , pt trở thành \(\left(2x-3\right)-x=10+15x+5x-10\)
\(\Leftrightarrow x=-\frac{3}{19}\) (loại)
2. Nếu \(x\le-\frac{2}{3}\) thì pt trở thành \(\left(3-2x\right)+x=-15x-10+5x-10\)
\(\Leftrightarrow x=-\frac{23}{9}\) (nhận)
3. Nếu \(-\frac{2}{3}< x\le0\) thì pt trở thành :
\(\left(3-2x\right)+x=15x+10+5x-10\)
\(\Leftrightarrow x=\frac{1}{7}\) (loại)
4. Nếu \(0< x< \frac{3}{2}\) thì pt trở thành
\(\left(3-2x\right)-x=15x+10+5x-10\)
\(\Leftrightarrow x=\frac{3}{23}\) (nhận)
Vậy tập nghiệm của pt : \(S=\left\{-\frac{23}{9};\frac{3}{23}\right\}\)
a) \(2x\left(3x+5\right)=3x\left(10+2x\right)+15\)
\(\Leftrightarrow6x^2+10x=30x+6x^2+15\)
\(\Leftrightarrow6x^2+10x-30x-6x^2=15\)
\(\Leftrightarrow-20x=15\)
\(\Leftrightarrow x=-0.75\)
b) \(3x\left(x+5\right)-x\left(3x-10\right)+7=0\)
\(\Leftrightarrow3x^2+15x-3x^2+10x+7=0\)
\(\Leftrightarrow25x+7=0\)
\(\Leftrightarrow25x=-7\)
\(\Leftrightarrow x=-0.28\)
\(\left|x-2\right|-3x=5\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-2-3x=5\\2-x-3x=5\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}-2x=7\\-4x=3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{7}{2}\\x=-\frac{3}{4}\end{array}\right.\)
\(\left|x-2\right|-3x=5\)
\(\Leftrightarrow\left|x-2\right|=3x+5\)
+ ) \(x< 2\)
pt \(\Leftrightarrow2-x=3x+5\)
\(\Leftrightarrow-x-3x=5-2\)
\(\Leftrightarrow-4x=3\)
\(\Leftrightarrow x=-\frac{3}{4}\) |( nhận )
pt \(\Leftrightarrow x-2=3x+5\)
\(\Leftrightarrow x-3x=5+2\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=-\frac{7}{2}\) ( loại )
Vậy .................