K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Nguyễn Thùy Chi - Toán lớp 10 | Học trực tuyến

NV
19 tháng 2 2020

ĐKXĐ: ...

\(\Leftrightarrow\left(x-1\right)\left(x+3-\sqrt{14x-15}\right)-\sqrt{10x-19}+1=0\)

\(\Leftrightarrow x^2+2x-2-\left(x-1\right)\sqrt{14x-15}-\sqrt{10x-19}=0\)

\(\Leftrightarrow x-\sqrt{10x-19}+\left(x-1\right)\left(x+2\right)-\left(x-1\right)\sqrt{14x-15}=0\)

\(\Leftrightarrow\frac{x^2-10x+19}{x+\sqrt{10x-19}}+\left(x-1\right)\left(\frac{x^2-10x+19}{x+2+\sqrt{14x+15}}\right)=0\)

\(\Leftrightarrow\left(x^2-10x+19\right)\left(\frac{1}{x+\sqrt{10x-19}}+\frac{x-1}{x+2+\sqrt{14x+15}}\right)=0\)

\(\Leftrightarrow x^2-10x+19=0\)

NV
7 tháng 6 2020

Một vài mẹo sử dụng casio FX-570VN.pdf - Google Drive

Bạn kéo xuống mục số 4, khoảng trang 36

Linh Chi

NV
7 tháng 6 2020

ĐKXĐ: \(x\ge\frac{9}{10}\)

\(\Leftrightarrow x^2+4x+1-x\sqrt{14x-1}-\sqrt{10x-9}=0\)

\(\Leftrightarrow x\left(x+3-\sqrt{14x-1}\right)+x+1-\sqrt{10x-9}=0\)

\(\Leftrightarrow\frac{x\left[\left(x+3\right)^2-\left(14x-1\right)\right]}{x+3+\sqrt{14x-1}}+\frac{\left(x+1\right)^2-\left(10x-9\right)}{x+1+\sqrt{10x-9}}=0\)

\(\Leftrightarrow\frac{x\left(x^2-8x+10\right)}{x+3+\sqrt{14x-1}}+\frac{x^2-8x+10}{x+1+\sqrt{10x-9}}=0\)

\(\Leftrightarrow\left(x^2-8x+10\right)\left(\frac{x}{x+3+\sqrt{14x-1}}+\frac{1}{x+1+\sqrt{10x-9}}\right)=0\)

\(\Leftrightarrow x^2-8x+10=0\) (casio)

NV
24 tháng 2 2020

a/ - Với \(x\le-3\Rightarrow\left\{{}\begin{matrix}VP< 0\\VT\ge0\end{matrix}\right.\) BPT vô nghiệm

- Với \(x\ge5\) hai vế đều ko âm, bình phương:

\(x^2-8x+16\ge x^2-2x-15\)

\(\Leftrightarrow6x\le31\Rightarrow x\le\frac{31}{6}\)

Vậy nghiệm của BPT là \(5\le x\le\frac{31}{6}\)

b/ - Với \(x\le-14\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn thỏa mãn

- Với \(x\ge0\) , bình phương 2 vế:

\(x^2+14x>x^2+12x+36\)

\(\Leftrightarrow2x>36\Rightarrow x>18\)

Vậy nghiệm của BPT là \(\left\{{}\begin{matrix}x>18\\x\le-14\end{matrix}\right.\)

NV
24 tháng 2 2020

c/ \(\left(x-3\right)\left[x+3-\sqrt{x^2-4}\right]\le0\)

- Với \(x=3\) thỏa mãn

- Với \(x>3\Rightarrow x+3\le\sqrt{x^2-4}\)

\(\Leftrightarrow x^2+6x+9\le x^2-4\Rightarrow x\le-\frac{13}{6}\) (vô nghiệm)

- Với \(x< 3\Rightarrow x+3\ge\sqrt{x^2-4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+6x+9\ge x^2-4\end{matrix}\right.\) \(\Rightarrow-3\le x\le-\frac{13}{6}\)

Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x=3\\-3\le x\le-\frac{13}{6}\end{matrix}\right.\)

d/ Đặt \(\sqrt{5x^2+10x+1}=t\ge0\Rightarrow x^2+2x=\frac{t^2-1}{5}\)

\(t\ge7-\frac{t^2-1}{5}\Leftrightarrow t^2+5t-36\ge0\) \(\Rightarrow t\ge4\)

\(\Rightarrow\sqrt{5x^2+10x+1}\ge4\)

\(\Leftrightarrow5x^2+10x-15\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\)

22 tháng 11 2019

\(\sqrt{x+\sqrt{14x-49}}+\sqrt{x-\sqrt{14x-49}}=\sqrt{14}\)

=>\(\sqrt{14}\left(\sqrt{x+\sqrt{14x-49}}+\sqrt{x-\sqrt{14x-49}}\right)=14\)

<=>\(\sqrt{14x+14\sqrt{14x-49}}+\sqrt{14x-14\sqrt{14x-49}}=14\)

<=>\(\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

+,với x \(\ge\) 7

\(2\sqrt{14x-49}=14\)

<=>x=7

+,với 3,5\(\le\)x<7

\(\sqrt{14x-49}+7+7-\sqrt{14x-49}=14\)

<=>14=14 ( luôn đúng với mọi x thỏa mãn đkxđ)

26 tháng 2 2016

Điều kiện \(\begin{cases}x-1\ge0\\19-x\ge0\end{cases}\)  \(\Leftrightarrow\)  \(x\in\left[1;19\right]\)

Ta thấy ngay phương trình có nghiệm x=10

Nghiệm này thuộc \(\left[1;19\right]\)  

Mặt khác, đặt \(f\left(x\right)=x^2+2x+\sqrt{x-1}\)

                        \(g\left(x\right)=\frac{1000}{x}+\sqrt{19-x}+20\)

Ta dễ dàng kiểm tra \(f\left(x\right)\) là hàm số đồng biến, \(g\left(x\right)\)  là hàm số dị biến trên \(\left[1;19\right]\) 

Vậy \(x=10\) là nghiệm duy nhất của phương trình