Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ nhân 4 cả 2 vế lên, vế trái sẽ trở thành (2x+1)(2x+2)^2(2x+3), nhân 2x+1 với 2x+3, cái bình phương phân tích ra
thành (4x^2+8x+3)(4x^2+8x+4)=72
đặt 4x^2+8x+4=a \(\left(a\ge0\right)\)
thay vào ta có (a-1)a=72 rồi bạn phân tích thành nhân tử sẽ có nghiệm là 9 và -8 loại được -8 thì nghiệm của a là 9
suy ra 2x+1=3 hoặc -3, tính ra được x rồi nhân vào với nhau
2/\(\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left[\left(x+1\right)+\left(x^2-x+1\right)\right]\)
đặt căn x+1=a, căn x^2-x+1=b (a,b>=0)
thay vào ra là \(2a^2-5ab+2b^2=0\\
\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
suy ra a=2b hoặc b=2a, thay cái kia vào bình phương lên giải nốt phương trình rồi nhân nghiệm với nhau
Nghiệm nguyên.
2x+3=(2x+1)+2
\(\left(1\right)\Leftrightarrow\left[\left(2x+1\right)\left(x+1\right)\right]^2+2\left(2x+1\right)\left(x+1\right)^2=18\\ \)
2x+1 luôn lẻ---> x+1 phải chẵn --> x phải lẻ---> x=2n-1
\(\left(4n+3\right)\left(2n\right)^2\left(4n+1\right)=18\)
18 không chia hết co 4 vậy vô nghiệm nguyên.
Viết diễn dải dài suy luận logic rất nhanh
\(2\left(x-2\right)\left(\sqrt[3]{4x-4}+\sqrt{2x-2}\right)=3x-1\)
\(\Leftrightarrow2\left(x-2\right)\left[\left(\sqrt[3]{4x-4}-2\right)+\left(\sqrt{2x-2}-2\right)\right]+8\left(x-2\right)=3x-1\)
\(\Leftrightarrow2\left(x-2\right)\left[\frac{4x-12}{\sqrt[3]{\left(4x-4\right)^2}+2\sqrt[3]{4x-4}+4}+\frac{2x-6}{\sqrt{2x-2}+2}\right]+\left(5x-15=0\right)\)
\(\left(x-3\right)\left[\frac{8\left(x-2\right)}{...}+\frac{4\left(x-2\right)}{...}+5\right]=0\Leftrightarrow x=3.\)
đặt \(\sqrt{2x-x^2}=a\)
phương trình trở thành:
\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)
đến đây thì khai triển đi
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
hạ sách nhân liên hợp =))
\(pt\Leftrightarrow\sqrt{x^4+4x^3+8x^2+8x+4}-\sqrt{x^4+2x^3+3x^2+2x+1}=2017\)
\(\Leftrightarrow\sqrt{x^4+4x^3+8x^2+8x+4}-4068290-\sqrt{x^4+2x^3+3x^2+2x+1}+4066273=0\)
\(\Leftrightarrow\left(\sqrt{x^4+4x^3+8x^2+8x+4}-4068290\right)-\left(\sqrt{x^4+2x^3+3x^2+2x+1}-4066273\right)=0\)
\(\Leftrightarrow\dfrac{x^4+4x^3+8x^2+8x+4-4068290^2}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{x^4+2x^3+3x^2+2x+1-4066273^2}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}=0\)
\(\Leftrightarrow\dfrac{x^4+4x^3+8x^2+8x-16550983524096}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{x^4+2x^3+3x^2+2x-16534576110528}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}=0\)
\(\Leftrightarrow\dfrac{\left(x-2016\right)\left(x+2018\right)\left(x^2+2x+4068292\right)}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{\left(x-2016\right)\left(x+2017\right)\left(x^2+x+4066274\right)}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\dfrac{\left(x+2018\right)\left(x^2+2x+4068292\right)}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{\left(x+2017\right)\left(x^2+x+4066274\right)}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}\right)=0\)
Dễ thấy: \(\dfrac{\left(x+2018\right)\left(x^2+2x+4068292\right)}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{\left(x+2017\right)\left(x^2+x+4066274\right)}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}>0\)
Nên \(x-2016=0\Rightarrow x=2016\)
Phương pháp dành cho thường dân. Chống chỉ định những người không phải thường dân xem.
\(\sqrt{\left(x^2+2x\right)^2+4\left(x+1\right)^2}-\sqrt{x^2+\left(x+1\right)^2+\left(x^2+x\right)^2}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)^2+4x^2+8x+4}-\sqrt{\left(x^2+x\right)^2+2x^2+2x+1}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)^2+4\left(x^2+2x\right)+4}-\sqrt{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2x+2\right)^2}-\sqrt{\left(x^2+x+1\right)^2}=2017\)
\(\Leftrightarrow x^2+2x+2-x^2-x-1=2017\)
\(\Leftrightarrow x=2016\)