Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT $\Leftrightarrow 27\sqrt[3]{81x-8}=27x^3-54x^2+36x-54$
$\Leftrightarrow 27\sqrt[3]{81x-8}=(3x-2)^3-46$
Đặt $\sqrt[3]{81x-8}=a; 3x-2=b$. Khi đó:
\(\left\{\begin{matrix} a^3-27b=46\\ 27a=b^3-46\end{matrix}\right.\) $\Rightarrow 27a=b^3-(a^3-27b)$
$\Leftrightarrow a^3-b^3+27a-27b=0$
$\Leftrightarrow (a-b)(a^2+ab+b^2+27)=0$
Dễ thấy $a^2+ab+b^2+27>0$ với mọi $a,b\in\mathbb{R}$
Do đó $a-b=0\Rightarrow a=b$
$\Leftrightarrow 81x-8=(3x-2)^3$
$\Leftrightarrow 27x^3-54x^2-45x=0$
$\Rightarrow x=0; x=\frac{3\pm 2\sqrt{6}}{3}$
Vậy.......
\(\sqrt[3]{{81x - 8}} = {x^3} - 2{x^2} + \dfrac{4}{3}x - 2\left( 1 \right)\)
\(\left( 1 \right) \Leftrightarrow 27{x^3} - 54{x^2} + 36x - 54 = 27\sqrt[3]{{81x - 8}} \)
Đặt \(y=\sqrt[3]{81x-8}\Leftrightarrow y^3=81x-8\)
Vậy ta có hệ phương trình \(\left\{{}\begin{matrix}27x^3-54x^2+36x-54=27y\\81x-8=y^3\end{matrix}\right.\Rightarrow\left(3x-2\right)^3+27\left(3x-2\right)=y^3+y\left(2\right)\)
Xét hàm số \(f(t)=t^3+t(t \in \mathbb{R})\)
Đạo hàm \(f'\left(t\right)=3t^2+1>0;\forall t\in\) \(\mathbb{R}\)
Vậy hàm số trên đồng biến trên \(\mathbb{R}\)
\(\left(2\right)\Leftrightarrow f\left(3x-2\right)=f\left(y\right)\\ \Leftrightarrow3x-2=y\\ \Leftrightarrow3x-2=\sqrt[3]{81x-8}\\ \Leftrightarrow27x^3-54x^2-45x=0\)
\(\Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{{3 \pm 2\sqrt 6 }}{3} \end{array} \right.\)
Vậy phương trình có tập nghiệm: \(T = \left\{ {0;\dfrac{{3 \pm 2\sqrt 6 }}{3}} \right\}\)
\(\Leftrightarrow\frac{7x+4}{\sqrt{2\left(x-1\right)\left(x+1\right)}}+\frac{2\sqrt{2x+1}}{\sqrt{2\left(x+1\right)}}=3+\frac{3\sqrt{2x+1}}{\sqrt{x-1}}\)
\(\Leftrightarrow7x+4+2\sqrt{\left(2x+1\right)\left(x-1\right)}=3\sqrt{2\left(x-1\right)\left(x+1\right)}+3\sqrt{2\left(2x+1\right)\left(x+1\right)}\)
\(\Leftrightarrow\left(7x+4+\sqrt{8x^2-4x-4}\right)^2=\left(\sqrt{18x^2-18}+\sqrt{36^2+54x+18}\right)^2\)
\(\Leftrightarrow\left(7x+4\right)^2+8x^2-4x-4+2\left(7x+4\right)\sqrt{8x^2-4x-4}\)\(=18x^2-18+36x^2+54x+18+2\sqrt{\left(18x^2-18\right)\left(36x^2+54x+18\right)}\)
\(\Leftrightarrow3x^2-2x+12+4\left(7x+4\right)\sqrt{\left(x-1\right)\left(2x+1\right)}=36\left(x+1\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow3x^2-2x+12=4\left(2x+5\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\left(3x^2-2x+12\right)^2=16\left(2x+5\right)^2\left(x-1\right)\left(2x+1\right)\)
\(\Leftrightarrow119x^4+588x^3+1940x^2-672x-544=0\left(1\right)\)
Ta thấy x>1 => Vế trái (1) \(>119.1^4+588.1^3+1940.1^2-672.1-544=1431>0\)
=> pt vô nghiệm.
Điều kiện : \(\begin{cases}x\ge\frac{1}{3}\\3x\in N\end{cases}\)
Từ phương trình ban đầu \(\Leftrightarrow\sqrt{2^x.2^{2.\frac{x}{3}}.\left(\frac{1}{8}\right)^{\frac{1}{3x}}}=2^2.2^{\frac{1}{3}}\)
\(\Leftrightarrow2^{\frac{x}{2}}.2^{\frac{x}{3}}.2^{\frac{-1}{2x}}=2^{\frac{7}{3}}\)
\(\Leftrightarrow2^{\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}}=2^{\frac{7}{3}}\)
\(\Leftrightarrow\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}=\frac{7}{3}\)
\(\Leftrightarrow5x^2-14x-3=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=-\frac{1}{5}\end{array}\right.\)
Kết hợp với điều kiện ta có \(x=3\) là nghiệm của phương trình
Bất phương trình : \(\Leftrightarrow2^{\frac{x+1}{2}}.2^{\frac{4x-2}{3}}.2^{9-3x}>2^{\frac{3}{2}}.2^{-3}\)
\(\Leftrightarrow2^{\frac{x+1}{2}+\frac{4x-2}{3}+9-3x}>2^{\frac{3}{2}-3}\)
\(\Leftrightarrow x< \frac{62}{7}\)
Vậy bất phương trình có tập nghiệm là \(S=\left(-\infty;\frac{62}{7}\right)\)
Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :
Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)
- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)
- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)
\(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm
Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )
a/ ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow3\sqrt{x+8}\ge3\left(\sqrt{x+3}+\sqrt{x}\right)\)
\(\Leftrightarrow\sqrt{x+8}\ge\sqrt{x+3}+\sqrt{x}\)
\(\Leftrightarrow x+8\ge2x+3+2\sqrt{x^2+3x}\)
\(\Leftrightarrow5-x\ge2\sqrt{x^2+3x}\)
- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT vô nghiệm
- Với \(x\le5\) hai vế ko âm, bình phương:
\(x^2-10x+25\ge4x^2+12x\)
\(\Leftrightarrow3x^2+22x-25\le0\Rightarrow-\frac{25}{3}\le x\le1\)
Vậy nghiệm của BPT đã cho là \(0\le x\le1\)
b/ ĐKXĐ: \(x>0\)
\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)< 2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\Rightarrow x+\frac{1}{4x}=t^2-1\)
BPT trở thành:
\(5t< 2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2>0\Rightarrow\left[{}\begin{matrix}t>2\\t< \frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}>2\Leftrightarrow2x-4\sqrt{x}+1>0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}< \frac{2-\sqrt{2}}{2}\\\sqrt{x}>\frac{2+\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}0\le x< \frac{3-2\sqrt{2}}{2}\\x>\frac{3+2\sqrt{2}}{2}\end{matrix}\right.\)
a) ĐK: \(\orbr{\begin{cases}x\ge3+\sqrt{3}\\x\le3-\sqrt{3}\end{cases}}\)
pt \(\Leftrightarrow\)\(x^2-6x+9-4\sqrt{x^2-6x+6}=0\)
\(\Leftrightarrow\)\(a^2-4a+3=0\)\(\left(a=\sqrt{x^2-6x+6}\ge0\right)\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x^2-6x+6}=1\\\sqrt{x^2-6x+6}=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1hoacx=5\\x=3\pm2\sqrt{3}\end{cases}}\left(nhan\right)\)
b) ĐK..
pt \(\Leftrightarrow\)\(\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\left|\frac{x-2}{x-1}\right|-3=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|\frac{x-2}{x-1}\right|=-3\left(loai\right)\\\left|\frac{x-2}{x-1}\right|=1\end{cases}}\Leftrightarrow x=\frac{3}{2}\left(nhan\right)\)
Đặt \(\sqrt[3]{81x-8}=3y-2\)
\(\Leftrightarrow81x-8=27y^3-54y^2+36y-8\)
\(\Leftrightarrow27y^3-54y^2+36y=81x\)
\(\Leftrightarrow3y^3-6y^2+4y=9x\)
Phương trình đã cho tương đương:
\(3\sqrt[3]{81x-8}=3x^3-6x^2+4x-6\)
\(\Leftrightarrow3\left(3y-2\right)=3x^3-6x^2+4x-6\)
\(\Leftrightarrow3x^3-6x^2+4x=9y\)
Ta có hệ phương trình \(\left\{{}\begin{matrix}3y^3-6y^2+4y=9x\left(1\right)\\3x^3-6x^2+4x=9y\left(2\right)\end{matrix}\right.\)
Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được
\(3\left(y^3-x^3\right)-6\left(y^2-x^2\right)+4\left(y-x\right)=9\left(x-y\right)\)
\(\Leftrightarrow3\left(y-x\right)\left(y^2+x^2+xy\right)-6\left(y-x\right)\left(x+y\right)+13\left(y-x\right)=0\)
\(\Leftrightarrow\left(3y^2+3x^2+3xy-6x-6y+13\right)\left(y-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3y^2+3x^2+3xy-6x-6y+13=0\left(3\right)\\y-x=0\end{matrix}\right.\)
Phương trình \(3y^2+3y\left(x-2\right)+3x^2-6x+13=0\)
\(\Delta=9\left(x-2\right)^2-12\left(3x^2-6x+13\right)=-27x^2+36x-120< 0\)
\(\Rightarrow\) Phương trình \(\left(3\right)\) vô nghiệm
\(\Rightarrow y=x\)
Khi đó \(\sqrt[3]{81x-8}=3x-2\)
\(\Leftrightarrow27x^3-54x^2-33x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{3\pm2\sqrt{5}}{3}\end{matrix}\right.\)
Anh ơi làm sao để chọn ẩn phụ 3y - 2 mà không chọn cái khác ạ?