K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

hpt\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+xz\right)=25\\xy+yz+xz=8\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+z^2=9=0^2+0^2+3^2\)\(=1^2+2^2+2^2\)và các hoán vị .

Từ đó giải ra (x;y;z)=(1;2;2) và các hoán vị.

#Walker

26 tháng 2 2020

Trừ theo vế hai pt đầu của hệ:

(x-y)(x+y-z)=0\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x+y=z\end{matrix}\right.\)

Xét x=y. Khi đó ta có hệ mới:\(\left\{{}\begin{matrix}y^2+yz=4\\z^2+y^2=10\end{matrix}\right.\)

=>5y2+5yz=2z2+2y2<=>3y2+5yz-2z2=0<=>\(\left[{}\begin{matrix}y=\frac{1}{3}z\\y=-2z\end{matrix}\right.\)

y=-2z=>(-2z)2-2z.z=4<=>2z2=4<=>\(\left[{}\begin{matrix}z=\sqrt{2}\rightarrow x=y=-2\sqrt{2}\\z=-\sqrt{2}\rightarrow x=y=2\sqrt{2}\end{matrix}\right.\)

\(y=\frac{1}{3}z\Rightarrow\left(\frac{1}{3}z\right)^2+\frac{1}{3}z.z=4\Leftrightarrow z^2=9\Leftrightarrow\left[{}\begin{matrix}z=3\rightarrow x=y=1\\z=-3\rightarrow x=y=-1\end{matrix}\right.\)

Xét x+y=z. Cộng theo vế hai pt đầu:

x2+y2+(x+y)2=8

=>4[(x+y)2+xy]=5[(x+y)2+x2+y2]<=>3x2-xy+3y2=0(pt vô nghiệm)

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3
28 tháng 1 2023

30 tháng 3 2017

a) \(\left\{{}\begin{matrix}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x-3y+2z=-7\\-2x+4y+3z=8\\3x+y-z=5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{11}{14}\\y=\dfrac{5}{2}\\z=-\dfrac{1}{7}\end{matrix}\right.\)

5 tháng 5 2017

a) Đặt \(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{matrix}\right.\)
Cộng \(\left(2\right)+\left(3\right)\) ta có:\(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{matrix}\right.\)
Trừ \(\left(4\right)-\left(1\right)\) ta được: \(4x=4\Leftrightarrow x=1\).
Thay vào hệ phương trình ta được:
\(\left\{{}\begin{matrix}1+3y+2z=8\\2.1+2y+z=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\z=2\end{matrix}\right.\).
Vậy hệ phương trình có nghiệm: \(\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\).

14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V

1 tháng 10 2019

giúp mình với mình đang cần gấp

1)Giải hệ phương trình với \(x,y,z\in R\)\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tốa)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn...
Đọc tiếp

1)Giải hệ phương trình với \(x,y,z\in R\)

\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   

2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tố

a)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)

b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)

3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn :

\(f\left(x^2\right)=f\left(x+y\right).f\left(x-y\right)+y^2,\forall x,y\in R\)

4)Cho đường tròn \(\left(I,r\right)\) nội tiếp \(\Delta ABC\).\(M\in\) đoạn \(BC\)\(\left(M\ne B,C\right)\).Gọi \(\left(I_1,r_1\right)\)là đường tròn nội tiếp \(\Delta AMC\).Đường thẳng song song \(BC\) tiếp xúc \(\left(I_1,r_1\right)\) cắt các cạnh \(AB,AC\) tại \(X,Y\).\(AM\) cắt \(XY\) tại \(N\).Gọi \(\left(I_2,r_2\right)\) là đường tròn nội tiếp \(\Delta AXN\).Chứng minh:

a)\(A,I,I_1,I_2\) cùng thuộc 1 đường tròn

b)\(r=r_1+r_2\)

0