Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này em thử nhá :33
Giả sử \(x\ge y\ge z\left(x,y,z\inℤ\right)\)
+) Xét TH : \(x=y=z\) Khi đó pt có dạng :
\(x^3+x^3+x^3=2021^{2002}\)
\(\Leftrightarrow3x^3=2021^{2002}\)
\(\Leftrightarrow x^3=\left(2021^{667}\right)^3\)
\(\Leftrightarrow x=2021^{667}\)
Do vậy : \(x=y=z=2021^{667}\)
+) Xét \(x>y>z\) ( Cái này chưa nghĩ :33 )
Ta có x³- y³ - 2y² - 3y - 1= 0
Hay x³ = y³ + 2y² + 3y + 1 bạn sử dụng pp đánh giá
Do y² ≥ 0 nên y³ - 3y² + 3y - 1 < y³ + 2y² + 3y + 1
và y³ + 2y² + 3y + 1 ≤ y³ + 3y² + 3y + 1
( y - 1 )³ < x³ ≤ ( y + 1 )³
Nếu x³ = y³ tìm được nghiệm ( -1; -1 )
Nếu x³ = ( y + 1 )³ tìm được nghiệm ( 1; 0 )
câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp
còn câu 3 tui hông nghĩ ra....